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Abstract
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statistical regularities, and numerous theoretical models have been proposed to explain it. However,
recent studies have pointed out a difficulty with these existing models: they predict that the time
required for firms to become giants or individuals to be super-rich is excessively long compared to
what is observed in empirical data. Furthermore, our empirical data show that Zipf’s law holds in the
size distributions of younger firms and individuals, contradicting existing models that predict Zipf’s law
is primarily driven by older firms and individuals. This paper provides an alternative explanation for
Zipf’s law to address the inconsistencies observed in empirical data. We focus on the heavy-tailed
nature of the distribution of growth rates for firm sales and individual incomes, showing that their
growth dynamics are characterized by rapid growth over short periods. We show that the emergence
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1 Introduction

The Pareto-tail nature of the size distribution of economic agents, known as Zipf’s law, is one of the

most prominent stylized facts in economics. This statistical regularity has been observed across various

fields, including firm size distributions, income and wealth distributions, and city size distributions (see,

e.g., Axtell (2001); Gabaix (2009); Luttmer (2010)). Indeed, many economists have long studied the

mechanisms underlying this regularity, with early contributions including Champernowne (1953), Wold and

Whittle (1957), Simon and Bonini (1958), Ijiri and Simon (1964), and Ijiri and Simon (1977)). Recently,

this question has regained attention, leading to the development of more sophisticated theoretical models to

explain Zipf’s law (e.g., Gabaix (1999); Reed (2001); Luttmer (2007); Luttmer (2011); Gabaix et al. (2016);

Beare and Toda (2022)).

However, existing theoretical models exhibit discrepancies with empirical data. Recent studies have

discussed the time required for economic agents to reach the tail region of the size distribution, where

Zipf’s law holds. For instance, regarding firm sales, Luttmer (2011) highlights that the time predicted

by theoretical models for firms to grow into a giant firm is excessively long compared to empirical data.

Similarly, Gabaix et al. (2016) show that in existing models, the time required for income distributions to

converge to a stationary distribution is much longer than observed in empirical data, making it difficult for

such models to explain observed fluctuations in income inequality. These inconsistencies with empirical data

stem from the assumptions of existing models that the tail of the distribution is formed by older agents (e.g.,

firms or individuals). However, as shown in Section 2.2, Zipf’s law for firm sizes and individual incomes is

actually shaped by relatively younger agents. Thus, these empirical findings highlight the need to explore

why relatively younger agents play a dominant role in shaping Zipf’s law.

This paper aims to provide an alternative explanation for Zipf’s law to resolve the inconsistencies with

the empirical data. The core idea of our explanation is to analyze, in a probabilistic sense, the most likely

patterns (or sample paths) that lead to the emergence of giant firms and super-rich individuals in the tail of

the distribution. Unlike existing models, which assume that giant firms and super-rich individuals are the

cumulative result of incremental growth in sales or income over a long period, our explanation implies that

their emergence is driven by rapid, short-term growth, or jumps. These jumps enable agents to reach the tail

region of the distribution within a short time, addressing the challenge of the long time required to become

a giant firm or super-rich in existing models. Our explanation demonstrates that the characteristic tail shape

of the size distribution described by Zipf’s law reflects the nature of these jumps.1

This paper begins with recent empirical findings on the shape of growth rate distributions. Regarding

the distribution of firm sales growth rates, it has been widely recognized since Stanley et al. (1996) that these

1In the supplementary paper to this study, Arata et al. (2023), the importance of jumps in the growth process is examined by
combining an alternative firm-level dataset with information on the occurrence of mergers. The results confirm that even when
samples involving mergers are excluded (i.e., focusing on internal growth), jumps remain significant in the growth process.
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distributions deviate from a Gaussian distribution (for surveys, see Coad (2009); Dosi et al. (2017)).Specifi-

cally, growth rate distributions are characterized by high kurtosis and heavier tails, making them more closely

approximated by a Laplace distribution than a Gaussian distribution (e.g., Bottazzi and Secchi (2006); Arata

(2019)). Moreover, recent empirical studies such as Bottazzi et al. (2011) and Dosi et al. (2020) have

pointed out that the tails of growth rate distributions are strictly heavier than those of a Laplace distribution,

which follows an exponential function. Interestingly, these distinctive properties of growth rate distributions

are not limited to firm sales but are also observed in the growth rate distributions of individual incomes.

A pioneering study by Guvenen et al. (2021) demonstrated that the growth rate distribution of individual

incomes in the United States deviates from a Gaussian distribution, exhibiting a high kurtosis and heavier

tails. Moreover, similar shapes in growth rate distribution have been observed not only in U.S. data but also

across various countries (see Guvenen et al. (2022)). In this paper, we demonstrate that the emergence of

giant firms and super-rich individuals qualitatively differs depending on whether the growth rate distribution

has a heavy tail. Specifically, we demonstrate that when the growth rate distribution has heavy tails, the

presence of jumps plays a crucial role in the emergence of giant firms and super-rich individuals.

More specifically, the key features of our theoretical explanation for Zipf’s law are as follows: Assuming

that the (log) growth rates in each period are independent and identically distributed (i.i.d.), the cumulative

growth rate over n periods can be expressed as the sum of n i.i.d. random variables. In cases where the

growth rate distribution has light tails, the large deviation of the sum of n i.i.d. random variables (i.e., a

high growth rate over n periods) arises from the equal contributions of all n variables. In other words, each

period’s growth rate is of moderate magnitude, and the accumulation of these moderate growth rates over

n periods leads to the large deviation in the sum. Existing models assume this growth process: since each

growth rate is relatively small, becoming a giant firm or super-rich individual requires sustained moderate

growth rates over a long period. Consequently, these models predict that it takes a significant amount of

time to reach the tail region of the size distribution. By contrast, when the growth rate distribution has a

heavy tail, the large deviation of the sum of n i.i.d. random variables is primarily driven by a single period in

which the growth rate takes on an exceptionally large value. In other words, a single period of rapid growth

(i.e., the occurrence of a jump) can immediately propel an agent into the tail region of the size distribution.

A heavy-tailed growth rate distribution implies the existence of such jumps, demonstrating that reaching the

tail region of the size distribution does not necessarily require a long time.

Another feature of our theoretical explanation is that it does not impose the stationarity assumption;

that is, we do not assume that the distribution of firm sales or individual incomes reaches a stationary state

in the limit n → ∞. Rather than analyzing the limit as n → ∞, we focus on how the distribution of the

sum of n i.i.d. random variables evolves as n increases. Specifically, when n is not sufficiently large, the

Gaussian approximation based on the central limit theorem, often employed in existing models, cannot be

applied to the tail region. Instead, we show that the shape of the distribution in the tail region, where the
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Gaussian approximation fails, provides the key to explaining Zipf’s law. Our explanation of Zipf’s law in the

tail region for relatively small n aligns with the empirical observation that Zipf’s law is most prominently

observed among younger firms and individuals.

The closest study to our analysis in terms of providing a theoretical explanation for Zipf’s law is Beare

and Toda (2022), and we highlight the differences between their study and ours. Several recent studies have

addressed the issue that the time required to become a giant firm or super-rich individual is excessively long

(e.g., Luttmer (2011); Gabaix et al. (2016)). To resolve this, these studies propose models where agents are

classified into multiple types, with certain types assumed to have persistently higher average growth rates

than others, enabling agents of specific types to reach the tail of the distribution more quickly. Beare and

Toda (2022) extend this approach within a more general framework, representing the state-of-the-art in this

line of research. However, it should be noted that even in models that introduce multiple agent types, the

growth processes of each type retain characteristics similar to those of existing models discussed above.

Within each agent type, the growth process relies on moderate growth rates accumulated over time to reach

the tail of the distribution. The size distribution of each type implies that the higher the tail is considered, the

more it is dominated by older agents, which is the same as in existing models. Therefore, when aggregating

across all agent types to obtain the overall distribution, the tail regions should predominantly consist of older

agents. This, however, contradicts the empirical data (see Section 2.2). Additionally, the assumption of

multiple agent types implies the existence of groups of firms or individuals with persistently higher average

growth rates over long periods. Yet, recent empirical studies on high-growth firms suggest a different picture

(e.g., [Schneck et al (2021, JBVI)]()). High growth is not an intrinsic characteristic of certain firms but rather

reflects short-term periods of exceptional growth (i.e., high-growth episodes). Outside of these episodes,

their growth processes are indistinguishable from other firms. Our theoretical framework aligns with this

finding, suggesting that the growth process is indistinguishable from other agents before the occurrence of a

jump. As we demonstrate below, this aspect is also supported by our empirical data.

The main contribution of this paper is to show that our alternative explanation for Zipf’s law is consistent

with empirical data. For firm sales data, we use the Tokyo Shoko Research (TSR) dataset, which covers

millions of firms in Japan. For individual income data, we utilize tax return data provided by the National Tax

College of Japan, which records income information for more than 20 million individuals annually. We use

these two datasets to test the two key assumptions underlying our theoretical explanation. The first assumption

is the random walk assumption, commonly used in existing models, which posits that agents’ growth rates

are independently and identically distributed. We examine the dependence between growth rates across

consecutive periods, focusing not only on the overall dependence within the distribution but also on the tail

dependence, which is more critical for explaining Zipf’s law (i.e., whether jumps occur consecutively). The

results show that while growth rates across consecutive periods are not entirely independent, the dependence

in the tail region is weak enough to justify treating them as independent, as assumed in our theoretical
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explanation. The second assumption is that the growth rate distributions have heavy tails, particularly tails

heavier than the exponential function. To test this assumption, we employ density estimation, mean excess

functions, and tail estimation methods proposed by Gardes et al. (2011) and El Methni et al. (2012). All

these analyses consistently indicate that the growth rate distribution has heavier tails than the exponential,

specifically resembling a Weibull tail. These two empirical findings confirm that the two assumptions

underlying our explanation of Zipf’s law are consistent with the data.

Finally, we demonstrate that the implications of our theoretical explanation for Zipf’s law are consistent

with the data. In particular, we provide the following three empirical findings that distinguish our theoretical

explanation from existing models: (1) The tail exponent of the size distribution is determined by the tail

exponent of the growth rate distribution (and the tail exponent of the initial size distribution). (2) Zipf’s law

holds not as a result of aggregating agents of different ages, but within the size distribution of agents at each

age group (particularly among younger agents). (3) The growth process of agents achieving high growth

rates over n periods is not characterized by persistently high average growth throughout the entire period but

is instead driven by a single exceptional large jump in one period. Regarding (1), while both the distribution

of firm sales and individual incomes exhibit Pareto tails, it is well-known that their tail exponents differ.

We show that this difference in the tail exponents of size distributions corresponds to differences in those

of growth rate distributions and initial size distributions. In existing models, no direct relationship exists

between the tail exponent of the size distribution and that of the growth rate distribution, providing further

evidence that our theoretical explanation is consistent with the data. Regarding (2), the size distribution

by age highlight inconsistencies between existing models and the data. We demonstrate that this feature

of the size distributions by age is consistent with our theoretical explanation. Specifically, for firm sales,

we confirm that older groups tend to approximate a Gaussian distribution, a prediction also made by our

theoretical explanation. Regarding (3), we examine the conditional probability of growth rates given that the

sum of n i.i.d. random variables takes on a large deviation. According to our theoretical explanation, a large

deviation in the sum of n i.i.d. random variables is achieved through a single jump among them. As a result,

the n−1 smallest growth rates, excluding the jump, should follow the same distribution as the unconditional

growth rate distribution. In contrast, existing models assume that the n growth rates, on average, achieve

higher growth over the entire period. Thus, the distribution of the n− 1 smallest growth rates should exhibit

a positive drift compared to the unconditional distribution. Our empirical data supports the former scenario,

providing evidence consistent with the predictions of our explanation.

The remainder of this paper is organized as follows. In Section 2, we explain the characteristics of

existing models of Zipf’s law and demonstrate their inconsistencies with empirical data. In Section 3, we

propose an alternative explanation for Zipf’s law. In Section 4, we empirically test the two assumptions

underlying our theoretical explanation. In Section 5, we show that the predictions of our theoretical

explanation are consistent with the data. In Section 6, we present our conclusions.
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2 Inconsistencies with data

In this section, we review existing models of Zipf’s law and demonstrate that their predictions are

inconsistent with empirical data. In Section 2.1, utilizing Reed (2001)—which can be regarded as a

simplified version of Beare and Toda (2022), where the agent type is single and the growth rate distribution

is specified—we show that, in existing models, the tail of the size distribution is predominantly occupied

by older agents. In Section 2.2, using our empirical data, we focus on the size distributions by age and

demonstrate that the tail of the distributions of firm sales and individual incomes are inconsistent with the

predictions of existing models.

2.1 Review of existing models

Let us begin with the notation used in the following. Economic entities such as firms or individuals are

referred to as agents. The logarithmic value of an agent’s size, such as sales or income, is referred to simply

as its size and denoted by S.2 Zipf’s law implies that, when plotted on a logarithmic y-axis, the tail of the

distribution is represented by a straight line with a slope of −a (referred to as the tail exponent a), as follows:

logP(S > x) = −ax+ b.

The theoretical model of Zipf’s law given by Reed (2001) comprises two components: the size distri-

bution by age and the proportion of agents of each age within the total population. Let Sn denote the size

of an agent of age n. Reed (2001) assume that the size distribution by age, P(Sn > x | age = n), follows a

Gaussian distribution with variance nσ2 (for simplicity, we assume a mean of zero). 3 When x is sufficiently

large, the tail probability of the Gaussian distribution can be approximated using Mills’ ratio as follows:

P(Sn > x | age = n) ≈ σ
√
n

x
√
2π
e−

x2

2nσ2 .

It should be noted that the size distribution for each age group is not assumed to follow Zipf’s law. By

definition, given the size distributions by age, the overall size distribution P(S > x) can be obtained by

summing the size distributions across all ages. Reed (2001) assumes that the proportion of agents in each

age group within the total population follows a geometric distribution. This is based on the idea that agents

born at a particular time exit each year with a constant probability, so that the survival probability at age n

(denoted by pn) is given by a geometric distribution with an exit probability of p. Thus,

P(S > x) =
∑
n

P(Sn > x, age = n)

P(Sn > x, age = n) = pnP(Sn > x | age = n) ≈ p(1− p)n−1 · σ
√
n

x
√
2π
e−

x2

2nσ2

2Note that when using S as the size, it does not account for the age of agents.

3The rationale in existing models is that, by assuming a stationary distribution in the limit of n → ∞, the probability P(Sn > x |
age = n) can be approximated by a Gaussian distribution for sufficiently large n, based on the central limit theorem.
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In this model, which age group of agents accounts for the tail probability P(S > x)? Consider the ratio

of the following tail probabilities:
P(Sn2 > x, age = n2)

P(Sn1 > x, age = n1)
≈ (1− p)n2−n1 ·

√
n2
n1

· e
x2(n2−n1)

2σ2n1n2

where n2 > n1. The right-hand side is an increasing function of x. This implies that, as x becomes large,

the distribution in the tail region becomes increasingly dominated by older agents. In other words, the model

predicts that the Zipf’s law observed in the tail region is primarily formed by older agents.

This characteristic of existing models can be explained by two effects as n increases. When birth and

exit rates remain constant over time, the number of agents of a given age (i.e., pn) decreases geometrically

as n increases. At the same time, the variance in the size distribution for each age group grows with n,

leading to an increase in the tail probability of Sn. For a large value of x, the latter effect becomes dominant,

so as x grows, the tail of the distribution of S is dominated by older agents. This feature arises from a

common assumption in existing models that Zipf’s law can be explained by aggregating size distributions

across different n, even though the distribution for each age group does not follow Zipf’s law. Thus, the

tendency for older agents to dominate the tail region is also a characteristic shared by existing models.4 The

next section examines whether this prediction holds in empirical data.

4Another mechanism employed in the previous literature to explain Zipf’s law combines Brownian motion with a negative drift and
a reflective boundary (e.g., Gabaix (1999)). Specifically, such a model assumes the existence of a lower barrier Smin, where Sn

behaves as a Brownian motion with negative drift when Sn > Smin and reflects back upon reaching Smin. It is known that the
stationary distribution of this model satisfies Zipf’s law. The reflective boundary is interpreted as representing the balance in the
stationary state between the probability of agents passing Smin from below and from above. Based on this interpretation, it can be
shown that in this model as well, the tail probabilities are increasingly dominated by older agents as x becomes larger. Consider two
agents with different ages n1 and n2, where n2 > n1, each following a normal distribution with means µn1, µn2 (where µ < 0)
and variances n1σ

2, n2σ
2, respectively. The derivative of the logarithm of the ratio of tail probabilities with respect to x is given

by:

d

dx
log

(
P(Sn2 > x, age = n2)

P(Sn1 > x, age = n1)

)
≈ (n2 − n1)x

σ2n1n2
> 0

This implies that the ratio of tail probabilities is an increasing function of x, meaning that as x becomes larger, the tail probabilities
are increasingly dominated by older agents.
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2.2 Distributions by age

First, we examine the size distribution using Japanese firm-level data, defining firm size as the logarithm

of sales.5 Here, a firm’s birth year is defined by its incorporation date. Figure 1(a) shows the density estimate

of the distribution of firm size S (i.e., without considering age) on a logarithmic scale.6 As seen in the

figure, the right side of the distribution can be approximated by a straight line with a slope close to −1. This

indicates that Zipf’s law holds for the distribution of firm sales, consistent with the findings in the existing

literature.

Which age group of firms accounts for Zipf’s law observed in the aggregate distribution? Figure 1(b)

compares firms categorized into three age groups: firms younger than 50 years, those between 50 and 70

years, and those older than 70 years. As illustrated, the distribution for younger firms exhibits a Pareto tail,

while that of older firms deviates from the Pareto tail. To further examine the size distribution across different

age groups, we divided the sample into 5-year age intervals, comparing the size distributions for each age

group. Figure 2(a) shows that the distribution for younger firms display a Pareto tail across a wide range,

with each size distribution exhibiting a similar slope in the tail region. In contrast, as shown in Figure 2(b),

the size distribution for older firms deviates from the Pareto tail, instead resembling a bell shape similar to

that of a Gaussian distribution. To examine this point further, Figure 3(a) presents QQ-plots of the size

distributions for each age group. If the size distribution approximates a Gaussian distribution, it should align

with the straight line in the plot. As shown in the figure, the tail of the size distribution for younger age

groups deviates from the straight line, whereas it approaches the straight line as firm age increases. These

results suggest that, contrary to the predictions of existing models which assume older firms form the Pareto

tail, the observed Pareto tail in the aggregate distribution is primarily shaped by younger firms.

To clarify the inconsistency between the predictions of existing models discussed in Section 2.1 and the

data, Figure 3(b) presents the proportions of firms from each age group in the tail probability P(S > x).

The proportion of firms from each age group remains stable or even increases for younger firms as the size x

increases. This result contrasts with existing models, which predict that the proportion of older firms should

increase in the tail probability as x increases. These findings indicate that, to resolve the inconsistency with

the data, an alternative explanation for Zipf’s law is required.

Interestingly, the characteristics observed in the distribution of firm sales also appear in the distribution

of individual incomes. We define the logarithm of individual income as the size and analyze the shape of its

distribution. Figure 4 displays both the aggregate distribution of size S and the size distributions divided

into five-year age groups. Consistent with previous studies, a Pareto tail is evident in the right tail of the

5Details about the data used are provided in Section 4.1.

6In our analysis, we utilize both the tail probability, P(Sn > x), and the density function, P(Sn ∈ dx), depending on the context.
Note that when Zipf’s law holds, both the tail probability and density function can be represented as straight lines on a log scale for
the y-axis.
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(a) Aggregate (b) Three age groups

Figure 1: Density estimates of the size distribution of firm sales. Using the logarithm of firm sales as size, the
estimated density function of the aggregate distribution P(S > x) from 2010 to 2020 and the distributions P(Sn > x)

for three age groups — young, middle, old — are provided in Panel (a) and Panel (b), respectively. The sample sizes
for the three age groups used in the estimates in Panel (b) are 932, 344 for young, 152, 512 for middle, and 23, 433 for
old. The y-axis is on a logarithmic scale.

(a) Ages 5 to 50 (b) Ages 50 and above

Figure 2: Size distributions by age group. The sample is divided into age groups in 5-year interval, with the density
function of the size distribution estimated for each group. For instance, age_10 refers to firms between the ages of 5
and 10. Panel (a) shows age groups from 5 to 50, while Panel (b) shows age groups 50 and older. The y-axis is on a
logarithmic scale.
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(a) QQ-plot (b) Proportion in the tail probability

Figure 3: QQ-plots of size distributions by age group and the proportion of firms from each age group in the tail
probability. In Panel (a), the straight line corresponds to a Gaussian distribution. For simplicity, only a subset of the
age groups in five-year intervals is shown. Panel (b) displays the proportion of firms from each age group within the
tail probability P(S > x) as a function of x.

aggregate distribution of individual income, demonstrating that Zipf’s law holds. Furthermore, this Pareto

tail is observed in the size distributions for each age group, with all size distributions sharing a common

slope in the tail region. In addition, Figure 5(a) presents QQ-plots for the size distributions by age group.

Although convergence toward a Gaussian distribution is less pronounced that in the case of firm sales, the

deviation from a Gaussian distribution is clear especially in the younger age groups.

In Figure 5(b), the proportion of individuals from each age group in the tail probability, P(S > x), is

shown. As illustrated, this proportion remains stable across different sizes, x, with no trend of increasing

proportions of older individuals as x increases. These results suggest that Zipf’s law already holds within

the size distribution of younger individuals, contradicting the predictions of existing models. Zipf’s law is

not formed as a result of aggregating across different age groups. In the following section, we provide an

alternative explanation of Zipf’s law that aligns with these empirical findings observed in both firm sales and

individual incomes.
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(a) Aggregate (b) Each age group

Figure 4: Density estimates of the size distribution of individual incomes. Using the logarithmic value of individual
income as size, Panels (a) and (b) present density estimates for the aggregate distribution P(S > x) from 2014 to 2020,
and for the distribution P(Sn > x) for the 2020 sample divided by five-year age groups, respectively. For example,
age_30 refers to the group of individuals aged 25 to 30 years. The y-axis is on a logarithmic scale.

(a) QQ-plot (b) Proportion in the tail probability

Figure 5: QQ-plots of size distributions by age group and the proportion of firms from each age group in the tail
probability. In Panel (a), the straight line corresponds to a Gaussian distribution. Panel (b) displays the proportion of
individuals from each age group in the tail probability P(S > x) as a function of x.
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3 Alternative explanation

In this section, we provide an alternative explanation for Zipf’s law. In Section 3.1, we explain that

the tail of the distribution of the sum of n i.i.d. random variables cannot be approximated by a Gaussian

distribution. In Section 3.2, we focus on how the sum of n i.i.d. random variables changes as n increases

and discuss what determines the tail behavior. In Section 3.3, we examine the impact of the initial size on

the size distribution. In Section 3.4, we analyze how large deviations in the sum of n i.i.d. random variables

occur.

3.1 Setup

Let us introduce our notations. As in the previous section, let the size at the initial point (i.e., the

logarithm of a firm’s sales or an individual’s income) be S0, and define the growth rate at period k (i.e., the

difference in logarithmic values) as Xk. Thus, the growth rate over n periods (denoted by S̃n) is expressed

as the sum of n individual growth rates, and the size at time n (denoted by Sn) is expressed as the initial size

plus S̃n:

S̃n := X1 + · · ·+Xn, Sn := S0 + S̃n

Here, we assume that Sn follows a random walk as follows.

Assumption 3.1. Sn follows a random walk with an initial condition S0, i.e., n random variablesX1, ..., Xn

are independent and identically distributed with mean 0 and variance σ2.

Under this assumption, S̃n can be viewed as the sum of n iid random variables. The question we need to

address here is: what is the distribution of S̃n? According to the central limit theorem, the normalized sum

of n iid random variables converges to the standard Gaussian distribution as n goes to infinity (see Chapter

5 of Petrov (1995)). More precisely, using the following notation,

Zn = σ−1n−1/2S̃n, Fn(x) = P(Zn < x)

the central limit theorem implies that for any fixed x,
1− Fn(x)

1− Φ(x)
→ 1,

Fn(−x)
Φ(−x)

→ 1 as n→ ∞ (1)

Here, Φ is the standard Gaussian distribution. From this theorem, one might think that if n is sufficiently

large, the distribution of S̃n (or St) can be well approximated by a Gaussian distribution across all regions.

Indeed, many previous studies (e.g., Reed (2001)) assume that the distribution of firms or individuals in

the same generation (i.e., the same age) can be approximated by a normal distribution due to the central

limit theorem. However, this view is generally incorrect because the convergence to a Gaussian distribution

occurs only for fixed x.

Now, what if x depends on n? Regarding this problem, the most widely used result in probability theory

is the following theorem proved by Harald Cramér:
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Theorem 3.1 (Theorem 5.23 in Petrov (1995)). Suppose that Cramer’s condition holds.7 Then for x ≥
0, x = o(n1/2),

1− Fn(x)

1− Φ(x)
= exp

{
x3√
n
λ

(
x√
n

)}[
1 +O

(
x+ 1√
n

)]
,

Fn(−x)
Φ(−x)

= exp

{
− x3√

n
λ

(
− x√

n

)}[
1 +O

(
x+ 1√
n

)] (2)

where λ(t) =
∑∞

k=0 ckt
k is called Cramer’s series, which is power series with coefficients that depend only

on the cumulant of random variable X1.

The right-hand side of Eq.(2) is known as the Cramer correction, which captures the deviation from the

Gaussian distribution. As indicated by Eq.(2), by imposing the additional condition x = o(n1/6)—which

focuses on a narrower region around x = 0—we can recover Eq.(1). This implies that normal convergence

under the central limit theorem begins in the vicinity of x = 0 and gradually extends as n increases. However,

beyond the zones of o(n1/6) or x = o(n1/2), normal convergence is generally not guaranteed. This poses

a significant issue for our analysis, particularly when considering the tail behavior of distributions, such as

those described by Zipf’s law. In real data, the value of n is finite, while our focus often lies on large values

of x, which correspond to the distribution’s tail. Therefore, explaining Zipf’s law requires accounting for

regions where normal convergence does not hold. As will be discussed in detail below, the core of our

explanation of Zipf’s law concerns the tail behavior of the distribution, where normal convergence does not

occur.

Before discussing the general setting, we examine two cases where Xk follows specific distributions

and observe how the distribution of the sum S̃n changes as n increases. The first case is when Xk follows a

Laplace distribution, with its probability density given by:

P(dx) =
1

2
exp(−|x|)dx

The second case involves a distribution with a Weibull tail given by:

P(Xk > x) =
1

2
exp(−|x|α), 0 < α < 1

In the former case, we can derive an explicit expression for the distribution of S̃n.8 In the latter case, while

an explicit expression for the distribution is not obtainable, we generate pseudo-samples through simulation

and estimate the density function using these samples (with α set to 0.7).

7For Cramér’s condition, refer to the next section. As discussed in the next section, the convergence to a Gaussian distribution around
x = 0 holds even when Cramér’s condition is not satisfied.

8When Xk follows a Laplace distribution, the probability density function of S̃n is given by the following expression (cf. Chapter
2.3.1 in Kotz et al. (2001)):

PS̃n
(dx) =

e−|x|

(n− 1)!2n

n−1∑
j=0

(n− 1 + j)!

(n− 1− j)!j!

|x|n−1−j

2j

Using this, the probability density function of S̃n is depicted in Figure 6(a).
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(a) Laplace distribution (b) Weibull tail distribution

Figure 6: Probability density functions of the sum S̃n for various values of n. In both panels, the probability density
functions of the sum S̃n, for n = 1, . . . , 12, are presented. For reference, a Gaussian distribution is also included, with
σ set to match the standard deviation for n = 12.

Figure 6 illustrates the density functions of the distribution of S̃n on a logarithmic scale for both the

Laplace distribution and the Weibull tail distribution. As is evident from the figure, for small values of x (i.e.,

around x = 0), the central peak of the density function flattens and approaches a bell shape as n increases.

This behavior reflects the normal convergence discussed above, where the distribution approaches a Gaussian

distribution in the central region as n grows. On the other hand, in the large x region (i.e., the tail region),

the deviation from the Gaussian distribution becomes significant. In both figures, the density function of

S̃n in the tail region, when plotted on a logarithmic scale, shifts upward parallel to the probability density

function of Xk as n increases. This indicates that, even as n increases, the tail behavior of the distribution

of the sum S̃n is determined by the tail probabilities of its individual components, P(Xk > x). A rigorous

explanation of this phenomenon will be provided in the next section.
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3.2 Three zones of the distribution of S̃n

This section discusses how the probability distribution of S̃n is characterized depending on n and x.

As will be discussed below, the behavior of S̃n varies significantly depending on whether the tail of the

distribution of its components Xk is heavier or lighter than the exponential function. More precisely, we

refer to the distribution of Xk as light-tailed if it satisfies the following Cramér condition: for some λ > 0,

EeλXk <∞

For example, the Gaussian and Laplace distributions are examples of light-tailed distributions. On the

other hand, if the distribution is not light-tailed (i.e., if EeλXk is not finite for any λ > 0), it is referred

to as a heavy-tailed distribution. In particular, heavy-tailed distributions that satisfy (very weak) regularity

conditions9 are called subexponential distributions. Distributions with heavy tails, such as the Weibull and

Pareto distributions, belong to the class of subexponential distributions.

One of the most important properties of subexponential distributions is that whenX1, . . . , Xn are i.i.d.,

the following approximation holds for the tail probability of the sum S̃n:

P(S̃n > x) ∼ nP(Xk > x) as x→ ∞

In particular, recall that the term nP(Xk > x) on the right-hand side represents the probability that the

maximum of the elements, max{X1, . . . , Xn}, exceeds x.10 This property indicates that as x→ ∞, the tail

probability of the sum is asymptotically equivalent to the tail probability of the maximum element. In other

words, the large deviation of the sum is driven by the large deviation of the largest individual element.

In this analysis, we assume that the growth rates X1, X2, . . . , Xn are random variables following

a common subexponential distribution. Subexponential distributions can generally be divided into two

categories: those with Pareto tails and those with Weibull tails. We specifically assume that the growth rate

distribution belongs to the class with Weibull tails. More precisely, this assumption is formalized as follows

(the empirical validity of this assumption will be discussed in Section 4.3):

9The regularity condition for a heavy-tailed distribution to be subexponential is as follows: Let F denote the distribution of the
random variable X+

k := max{0, Xk} on the positive real half-line R+, and let F (x) := F [x,∞). The following limit exists:

lim
x→∞

F ∗ F (x)

F (x)

where F ∗F (x) represents the convolution of F . Empirically, heavy-tailed distributions often used in applied analysis (e.g., Weibull
tail, Pareto tail) satisfy this condition, so in practice, subexponential distributions can be regarded as equivalent to heavy-tailed
distributions. For further details, refer to Chapter 3 in Foss et al. (2011).

10This can be proven as follows. Letting F be the distribution function of Xk (i.e., F (x) = P(Xk ≤ x)), the tail probability of the
maximum max{X1, . . . , Xn} can be expressed as:

P(max{X1, ..., Xn} > x) = 1− Fn(x) = (1− F (x))

n−1∑
k=0

F k(x) ∼ n(1− F (x)), as x → ∞
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Assumption 3.2. The growth rate distribution is of the form of the following Weibull-like distribution:

P(Xk > x) = e−ℓ(x), ℓ(x) := xαL(x), 0 < α < 1

where L(x) is a slowly varying function at infinity.

One characteristic of a Weibull tail is that, for sufficiently large x, the change in the slope of the tail on a

log scale (i.e., the second-order derivative of ℓ(x)) becomes small. In other words, over a wide range of the

tail, the distribution appears to follow a straight line. This property is utilized in Section 4.3 and Section 5.1.

What shape does the distribution of the sum S̃n take under the above assumptions? As can be inferred

from the discussion in Section 3.1, the central limit theorem suggests that the distribution of S̃n can be

approximated by a Gaussian distribution around x = 0, and this region expands as n increases. On the

other hand, due to the properties of subexponential distributions, the tail of the distribution of S̃n should be

approximated by the tail probability of the growth rates Xk, multiplied by n. Thus, the characteristics of the

distribution of S̃n depend on both n and x. A rigorous proof of this behavior is provided below.

Theorem 3.2 (Theorem 5.4.1 in Borovkov and Borovkov (2008)). For x ≤ σ1(n),

P(S̃n ⩾ x) =

[
1− Φ

(
x√
n

)]
e−nΛ

0
κ(x/n)(1 + o(1))

Here, Λ0
κ(x/n) := Λκ(x/n)− x2

2n2 , where Λκ(x/n) is the truncated Cramér series. For x≫ σ1(n),

P(S̃n ⩾ x) = ne−M(x,n)(1 + ε(x, n))

In particular, for x≫ σ2(n),

P(S̃n ≥ x) = nP(Xk > x)(1 + o(1))

Here, boundaries σ1(n) and σ2(n) are given by σ1(n) := n1/(2−α)L1(n) and σ2(n) := n1/(2−2α)L2(n)

with L1 and L2 being some slowly varying functions, respectively.

According to this theorem, the distribution of S̃n can be divided into three regions depending on x and

n: (i) the Cramér approximation region, (ii) the intermediate deviation region, and (iii) the extreme deviation

region. First, in region (i) (i.e., x ≤ σ1(n)), similar to the result discussed in Section 3.1, the Cramér

approximation holds near x = 0. Specifically, in a narrower region around x = 0, normal convergence

applies, and the distribution can be approximated by a Gaussian distribution. On the other hand, region (iii)

corresponds to the domain of the principle of a single large jump, where the distribution is determined by

the tail probability of the individual elements Xk. In the intermediate region (ii), σ1(n) ≪ x ≪ σ2(n), the

distribution of S̃n exhibits a mixture of the properties of both the Cramér and extreme deviation regions,

making it generally difficult to have a simple expression. However, when considering the distribution

on a logarithmic scale (i.e., logP(S̃n > x)), the following approximation holds by using the relation

M = ℓ(x)(1 + o(1)): For x≫ σ1(n),

logP(S̃n > x) = (1 + o(1)) log nP(Xk > x)
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This implies that if we are interested in the shape of the distribution on a logarithmic scale, as in Zipf’s law,

then for x≫ σ1(n), the distribution can be approximated by log nP(Xk > x), in both the intermediate and

extreme deviation regions. In the next section, we analyze the shape of the distribution of Sn, which includes

the initial size S0, depending on n and x.
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3.3 Initial size and the distribution of Sn

In this section, we consider the distribution of Sn when the distribution of S0 is also taken into account

and analyze how the shape of Sn varies with x and n. Note that Sn becomes a combination of two random

variables, S̃n and S0. Here, we assume that S0 follows another subexponential distribution (different from

that of Xk), particularly a Weibull tail distribution; i.e.,

P(S0 > x) = e−ℓ0(x), ℓ0(x) := xα0L0(x), 0 < α0 < 1

where L0(x) is a slowly varying function.11 Theorem 3.2 can be extended as follows.

Theorem 3.3 (Theorem 11.3.1(iii) in Borovkov and Borovkov (2008)). For x≫ σ1(n) and x≫ σ01(n),

P(Sn > x) ∼ e−M0(x,n) + ne−M(x,n)

In particular, for x≫ σ2(n) and x≫ σ02(n),

P(Sn > x) ∼ P(S0 > x) + nP(Xk > x)

Here, σ1(n), σ2(n), andM(x, n) are the same as given in Theorem 3.2. The functions σ01(n) and σ02(n) take

the form of σ01(n) = n1/(2−α0)L3(n) and σ02(n) = n1/(2−2α0)L4(n), where L3 and L4 are slowly varying

functions. For x≫ σ01(n), M0(x, n) takes the form of M0 = ℓ0(x)(1 + o(1)).

Based on this theorem, let us consider the slope of the tail of the distribution of Sn in the logarithmic

scale. First, in the extreme deviation region, the theorem indicates that the tail of the distribution of Sn is

determined by the tail probabilities of S0 and Xk. Note that the slopes of the tails of the distributions of S0
and Xk in the logarithmic scale are given by ℓ′0(x) and ℓ′(x), respectively. Therefore, by considering the

logarithmic scale and differentiating the right-hand side, we obtain the following equation:
d

dx
logP(Sn > x) = −w0ℓ

′
0(x)− wnℓ

′(x),

w0 :=
P(S0 > x)

P(S0 > x) + nP(Xk > x)
, wn :=

nP(Xk > x)

P(S0 > x) + nP(Xk > x)

To analyze the tail exponent of Zipf’s law, we consider the case where x is sufficiently large and ℓ0(x)

and ℓ(x) can be approximated as follows:

ℓ0(x) ≈ a0x+ b0, ℓ(x) ≈ a1x+ b1

In particular, when the slopes of these two approximations are equal (a0 = a1), the slope of the tail

of logP(Sn > x) also matches this common slope. For different values of n, the slope of the tail of

11The assumptions made here are not as crucial to our analysis as those in Assumption 3.1 and Assumption 3.2. This is because if the
tail of the distribution of S0 is substantially lighter than that of the growth rates Xk (or S̃n), the influence of S0 on Sn is negligible,
and the distribution of Sn can be regarded as identical to that of S̃n. On the other hand, if the distribution of S0 is substantially
heavier than that of the growth rates Xk, Sn will be dominated by S0, and the distribution of Sn will be the same as that of S0.
Therefore, aside from these trivial cases, our interest here lies in situations where the shape of S0 is similar to that of the growth
rates Xk (or S̃n), which is why we assume that the distribution of S0 takes the form e−ℓ0(x). It should be noted that ℓ0, α0, and L0

may generally differ from the corresponding parameters ℓ, α, and L of the growth rate distribution, making this a weak assumption.
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logP(Sn > x) remains the same, with only the intercept increasing as n grows. When the slopes of these

two approximations differ (a0 ̸= a1), the slope of the tail of logP(Sn > x) is expressed as a weighted

average of a0 and a1, with weights w0 and wn. In particular, when a0 < a1 (i.e., the distribution of S0 has a

heavier tail than that of Xk), w0 is an increasing function of x. As a result, especially for small n, the slope

of the tail of logP(Sn > x) tends to be closer to that of the distribution of S0. As n increases, the weight

wn grows, causing the slope to approach that of the distribution of Xk.12

A similar argument can be made regarding the tail of the distribution of Sn in the intermediate deviation

region. Using the fact that the functions M0 and M can be approximated in this region by ℓ0(x)(1 + o(1))

and ℓ(x)(1 + o(1)), respectively, the slope of logP(Sn > x) is given by the following expression:
d

dx
logP(Sn > x) = (1 + o(1))(−w0ℓ

′
0(x)− wnℓ

′(x))

w0 :=
e−M0(x,n)

e−M0(x,n) + ne−M(x,n)
, wn =

ne−M(x,n)

e−M0(x,n) + ne−M(x,n)

As in the case of the extreme deviation zone, the slope of the tail of logP(Sn > x) is expressed as a weighted

average of a0 and a1. Thus, our analysis demonstrates that the slope of the tail of Sn is directly related to the

slopes of the tails of S0 and Xk.

12We consider the case a0 = a1 as the scenario where Zipf’s law holds more strictly.
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3.4 Patterns driving the large deviations in S̃n

Here, we return to S̃n and examine how large deviations in S̃n are generated. Specifically, we focus on

the most likely events given S̃n > x, where x is a large value. As demonstrated below, the way in which

S̃n > x occurs differs depending on whether the growth rate distribution is light-tailed or heavy-tailed.

As an illustrative example, letXk be a non-negative random variable with a probability density function

denoted by f (i.e., F (dx) = f(x)dx).13 Assume that f(x) can be written as follows:

f(x) = e−h(x), x ≥ 0

For instance, if f(x) is the density of an exponential distribution, then h(x) = x. When n iid random

variables follow the distribution F , the probability that their sum equals x is given by

P(S̃n = x) =

∫
S̃n=x

exp

(
−

n∑
k=1

h(Xk)

)
dX1 . . . dXn

Given the sum equals u, which combination ofX1, ..., Xn is most likely to occur? This question is equivalent

to minimizing the sum
∑n

k=1 h(Xk) subject to the condition that S̃n = x.

Let us consider the case where h is a convex function (e.g., a Weibull distribution with α > 1). Jensen’s

inequality implies that the minimum of the sum
∑n

k=1 h(Xk) is attained at X1 = ... = Xn = x/n.14 In

other words, the most likely combination of X1, ..., Xn that produces the sum S̃n = x is the one where all

components have the same value of x/n. Thus, it is most probable that each component contributes equally

to the sum. In contrast, when h is a concave function (e.g., a Weibull distribution with α < 1), the way

components X1, ..., Xn generate the sum S̃n = x differs qualitatively. The sum
∑n

k=1 h(Xk) is minimized

when Xk∗ = x for some k = k∗ and X1 = . . . = Xn = 0 for k ̸= k∗.15 This suggests that a single

component dominates the sum while other components contribute nothing. Lastly, note that the boundary

case is the exponential distribution, in which h is a linear function. In this case, both types of behavior could

occur.

The fact that the sum of random variables can be generated in two different ways can be illustrated by

considering the ratio of the contribution ofX1 within the sum.16 Consider two independent random variables

13This example is taken from Chapter 3 in Sornette (2006).

14Indeed, let X̂k be the deviation from x/n, i.e., X̂k := Xk − x/n. Jensen’s inequality states that for a real convex function φ,
φ
(∑

k xk

n

)
≤

∑
k φ(xk)

n
. Thus, ∑

k

h(Xk) = h
(x

n
+ X̂1

)
+ . . .+ h

(x

n
+ X̂n

)
≥ nh

(x

n

)
where we used

∑
k X̂k = 0 by definition.

15This can be shown as follows: Suppose that the statement does not hold. Thus, there exist at least two k such that 0 < Xk < x.
Take such two k (denoted by k1, k2) so that Xk1 ≥ Xk2 . The concavity of the function h yields that

∑
k h(Xk) can be lowered by

replacing Xk1 , Xk2 with Xk1 − ε,Xk2 + ε. This is a contradiction.

16This example is taken from Chapter 1 in Foss et al. (2011).

20



X1, X2 ≥ 0 drawn from a Weibull distribution with parameter α. We examine the distribution of the ratio

X1/(X1+X2) conditioned on the event that their sum equals x (i.e.,X1+X2 = x). The probability density

function of the ratio given x (denoted by gα,x) is as follows:

gα,x(r) = c(r(1− r))α−1e−x
α(rα+(1−r)α) (3)

where c is a normalizing constant independent of r.17

Figure 7 displays the density gα,x for three different values of α. As observed in the figure, it is

symmetric at 1/2 for all cases, which is obvious since X1 and X2 are two independent and identically

distributed. Let us discuss the density more closely for each value of α. In the case of α > 1 (i.e., a

light-tailed case), the density is unimodal and peaked at 1/2. This indicates that the most probable event

is for X1 and X2 to be of similar size (i.e., X1 = X2 = x/2). Particularly for a large value of x, the

density is concentrated around 1/2. In contrast, for the case where α < 1 (i.e., a heavy-tailed case), the

density peaks at 0 and 1, exhibiting a U-shaped curve. That is, it becomes more probable that either X1

or X2 (but not both) takes a large value and dominates the sum x. Furthermore, as suggested by Eq.(3),

the density concentrates at 0 and 1 as x → ∞. Thus, for large values of u, it is highly unlikely that both

X1 and X2 are large and contribute equally to the sum. Finally, consider the case where α = 1 (i.e., the

exponential case). The density is uniform, and this case can be seen as a boundary case. In this way, how

each component contributes to the total sum is determined by whether the tail of the distribution is heavier

than an exponential.

The intuition provided above is more rigorously formalized as follows. First, we consider the case

where the distribution of the growth rateXk is light-tailed. When the growth rate distribution is light-tailed,

the moment generating function can be defined (denote it by ψ(λ) := EeλXk ). We introduce the Cramér

transform of the random variable Xk, denoted Xβ
k , as follows:

P(Xβ
k ∈ dx) =

eλ(β)xP(Xk ∈ dx)

ψ(λ(β))
,

whereλ(β) is the value ofλ that gives the supremum ofβλ−logψ(λ), i.e., λ(β) := arg supλ(βλ−logψ(λ)).

When the sum S̃n takes on large values, the conditional probability of the growth rate Xk is given by the

following.

Theorem 3.4 (Corollary 3.1.2 in Borovkov (2020)). Suppose that β = x/n→ β0 as n→ ∞. Then, for any

17This can be proved as follows: Let ξ1, ξ2 be random variables such that ξ1 := X1
X1+X2

, ξ2 := X1 +X2. Then,

Pr(ξ1 = r|ξ2 = u) =
Pr(ξ1 = r, ξ2 = u)

Pr(ξ2 = u)

=
Pr(X1 = ru,X2 = u(1− r))

Pr(ξ2 = u)

The numerator is calculated using the fact that X1 and X2 are independent of each other. The denominator is determined by u and
independent of r. Setting the normalizing constant c, we obtain the result.
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Figure 7: Plots of the density function gα,u with α = 0.7, 1.0, and 2.0.

Borel sets B1, . . . , Bm from R, any k1, . . . , km,
m∏
i=1

P
(
Xβ0

i ∈ Bi

)
= lim

n→∞
P
(
Xk1 ∈ B1, . . . , Xkm ∈ Bm | S̃n ∈ [x, x+∆)

)
Note that Theorem 3.4 considers the case where x increases on the order of n. In such cases of

large deviations of S̃n (i.e., when the cumulative growth rate S̃n over n periods is exceptionally high), the

conditional distribution of the growth rates Xk conditional on this event is given by that of their Cramér

transform, Xβ
k . As an example, let us consider the Gaussian distribution and its Cramér transform. If

Xk follows a Gaussian distribution with mean µ and variance σ2, the moment generating function is given

by ψ(λ) = eµλ+σ2λ2/2, and λ(β) = β−µ
σ2 . Therefore, the Cramér transform of Xk results in a Gaussian

distribution with mean β and variance σ2 (i.e., for a Gaussian distribution, the Cramér transform simply shifts

the distribution horizontally along the x-axis). That is, if we assume µ = 0 for simplicity, the unconditional

probability distribution of the growth rate Xk (i.e., when considering all samples) has a mean of 0. In

contrast, if we focus only on those samples that achieve a large deviation S̃n = x = nβ, the average growth

rate for those samples would be β = x/n. In other words, the most typical pattern that results in the large

deviation S̃n = x is one where the growth rate increases gradually by x/n each year.

The properties of the conditional probability of the growth rates differ significantly when the growth

rate distribution is subexponential, compared to when it is light-tailed. The rigorous results are provided by

Armendáriz and Loulakis (2011).

Theorem 3.5 (Theorem 2 in Armendáriz and Loulakis (2011)). Let µ be the probability measure ofXk, i.e.,

µ(A) := P(Xk ∈ A). Suppose that µ is subexponential. Then, the conditional probability P((X1, ..., Xn) ∈
· | S̃n > x) converges in the total variance to a product of n−1 copies of µ and νx, where νx(A) := P(Xk ∈
A | Xk > x).

Theorem 3.5 states that when a large deviation S̃n > x occurs, the n − 1 smallest values of its

components follow the distribution µn−1, while the largest component follows the distribution νx. Note that
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µ represents the unconditional distribution of Xk. In other words, the large deviation of S̃n is driven solely

by the maximum value among X1, . . . , Xn (i.e., a jump), while the other growth rates remain distributed

according to the unconditional growth rate distribution.18 This property is in contrast to Theorem 3.4 and

can be used for empirical verification with data. Specifically, when selecting the n− 1 smallest growth rates

from X1, . . . , Xn for each firm or individual, they should follow the same distribution as the unconditional

growth rates. On the other hand, if the distribution of Xk is light-tailed, then the conditional probability

distribution of Xk given S̃n > x will follow the Cramér transform Xβ
k . Therefore, by examining empirical

data to determine which of these two cases it most closely resembles, we can identify the most typical pattern

that leads to S̃n > x.

18While the analysis here considers the limit as x → ∞, it is not necessarily the case that the properties observed in the x → ∞
regime are well approximated by, e.g., the 99th percentile of S̃n (i.e., even the 99th percentile may be too small to capture the
behavior in the x → ∞ regime). In practice, the principle of a single big jump for subexponential distributions holds only in a
very narrow portion of the tail as n increases, making it difficult to observe this property from empirical data. Similarly, verifying
the properties of Theorem 3.5 literally requires considering exceptionally large values of x, which may not be easily testable with
empirical data. However, even when considering relatively moderate values of x or smaller jumps, some studies have demonstrated
that large deviations of S̃n are still driven by jumps, similar to the behavior predicted by Theorem 3.5 (see Bazhba et al. (2020)).
Thus, the characteristic that large deviations of S̃n are driven by jumps does not necessarily require interpreting x → ∞ in the
strictest sense.

23



4 Empirical results: Test of the two assumptions

This section provides empirical evidence supporting our explanation of Zipf’s law. Section 4.1 provides

summary statistics on the sizes and their growth rates. Section 4.2 shows that the random walk hypothesis

provides a reasonable approximation of the empirical growth process, particularly in the tail region. Section

4.3 shows that the growth rate distribution is subexponential and exhibits a Weibull tail.

4.1 Data and summary statistics

In our empirical analysis,S0 is defined as the logarithm of the firm’s sales five years after its establishment

in the case of firm sales, as the logarithm of income at age 25 in the case of individual income. For example,

if a firm was established in the year 2000, and the log growth rate is denoted as gn, then the size Sn in the

year 2000 + n is expressed as follows:

Sn = log(annual sales revenue in 2000) + g01 + g02 + g03 + g04 + g05︸ ︷︷ ︸
S0

+ g06︸︷︷︸
X1

+ · · ·+ gn+5︸︷︷︸
Xn

Note that log(annual sales revenue in 2000) + g01 + g02 + g03 + g04 + g05 is equal to the logarithm of sales

in 2005, and thus corresponds to S0.

The reason we do not define S0 as the size immediately following an agent’s establishment is that the

growth mechanism immediately after establishment may substantially differ from the growth mechanism in

subsequent periods. For instance, in the case of firms, the establishment of a new firm may result from the

restructuring of a firm group. When a new firm is created by transferring the business operations of multiple

firms within the group, the transfer may be executed over several years following the firm’s establishment.

Treating the apparent growth caused by such pre-planned transfers as equivalent to growth in other periods

(i.e., assuming the growth rates to be iid random variables) would not suit our analysis. Therefore, by

including the first five years after establishment in S0, we mitigate the effect of such issues.19 Similarly, for

individual income, it is not appropriate to treat the substantial income increase associated with transitioning

from student status to employment as equivalent to income growth in other periods. Thus, we define S0 as

the logarithm of income at age 25, after the individual has completed their student years, where the random

walk assumption is more applicable.

Firm sales

The data used for our analysis of firm sales is firm-level data compiled by Tokyo Shoko Research (TSR).

As a credit rating agency, TSR conducts surveys based on the requests of its clients, and the data reflects

19Moreover, there is an additional data-related reason for defining S0 in this manner for firm sales. The TSR data used in our analysis
is based on firm surveys; therefore, newly established firms may not be included in the database if they were not surveyed by TSR
immediately after their establishment. By utilizing the sales data from firms five years after their establishment as S0, we can
enhance the coverage and representativeness of the database.
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Table 1: Summary statistics of firms’ sizes. The period is from 2010 to 2020. The unit is 1,000 yen. The summary
statistics are calculated using the log of annual sales (i.e., log(sale)).

the results of these surveys. It includes both listed and unlisted firms, covering more than one million

companies annually. Notably, nearly all large firms are included, and the information is frequently updated.

Therefore, we can consider the tail of the firm size distribution—our primary focus in this analysis—to be

comprehensively covered by the data.

Several conditions are imposed on the main sample. First, the sales of non-consolidated firms are used

as the definition of firm size. Firms for which sales data are unavailable are excluded from the sample.

Some firms in the TSR dataset report their financial results more than once within a single year, meaning

their fiscal period is less than 12 months. In our analysis, we include only firms with a fiscal period of 12

months. Firms in the government and financial sectors are excluded from the sample. The sample period

covers data from 2010 to 2020 (11 years), chosen to avoid the effects of both the global financial crisis and

the COVID-19 pandemic.20 As a result of these criteria, the sample size for the 2020 data is 1, 169, 440.

Summary statistics on firm size, including other years, are provided in Table 1.

Another important variable in our analysis is the growth rate of firm sales. The sample used for growth

rate analysis adds two additional conditions to the sample used for the analysis of firm size. The first

condition is that the initial firm size (i.e., the firm’s sales in 2010) must be at least 107.5 (i.e., about 30

million) yen. The reason for this is that if firm sales are too small, the fluctuations in the growth rate become

large, deviating from the iid assumption (or Gibrat’s law) underlying our theoretical analysis. The second

condition pertains to firm age. As stated in the definition of S0, the growth rate within the first five years of a

20In our analysis, year is based on the fiscal year-end date. For example, if a firm reports its sales for the period from April 1, 2010,
to March 31, 2011, with a fiscal year-end of March 31, 2011, we treat these sales as the firm’s sales for 2011.

25



(a) Firm sales data (b) Individual income data

Figure 8: Age distributions in 2020. The samples used here are the same as those considered in Table 1 and Table 3.

firm’s establishment is included in S0, so in the analysis of firm growth rates Xk, only firms that are at least

five years old are considered.

The summary statistics of growth rates for these samples are provided in Table 2. The table presents

summary statistics for one-year growth rates across different years, as well as statistics for growth rates over

longer periods, with 2010 as the initial year. As evident from the table, the fluctuations in one-year growth

rates remain remarkably stable throughout the sample period. Another notable point is that the fluctuations

in growth rates become larger as the period lengthens. While the latter point may seem obvious, it will be

analyzed in detail in the following section.

Individual income

For individual income data, we use tax return data provided by the National Tax College. In Japan,

individuals file a tax return to report their income and calculate the taxes owed for the year (January 1

to December 31). This process determines the amount of income tax and local taxes to be paid. While

not mandatory for everyone, filing a tax return is required, for example, if one’s salary income exceeds 20

million yen. Since our analysis focuses on high-income individuals in the tail of the distribution, tax return

data is well-suited to our study. Additionally, Japan has a system called the medical expense deduction,

where individuals can deduct medical expenses exceeding a certain amount from their taxable income,

thereby reducing their tax by filing a tax return. For these reasons, more than 20 million individuals file tax

returns each year. These tax returns are panelized, with each individual assigned a unique ID, and include

information on the individual’s age, providing all the data necessary for our theoretical analysis.

One of the important characteristics of the tax return data for our analysis is that it provides not only

the total amount of an individual’s income but also details on the types of income. Since our analysis

assumes that income shocks are persistent (i.e., the assumption of iid random variables), we define total
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Table 2: Summary statistics of firm growth rates. Here, I present the summary statistics for the one-year firm growth
rates for different years, as well as the growth rate statistics for longer periods with 2010 as the base year. For example,
g_20_10 represents the summary statistics for the growth rate from 2010 to 2020.
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Table 3: Summary statistics of individual income. The period covers from 2014 to 2020. The summary statistics are
calculated using the log of individual income (i.e., log(income)).

income excluding temporary income sources. Specifically, we define income as the sum of business income,

agricultural income, real estate income, interest income, dividend income, salary income, public pension

income, and miscellaneous business income. Additionally, individuals with zero income are excluded from

the sample. The sample size, for example, is 22, 567, 730 in 2020. Summary statistics for individual income,

including other years, are provided in Table 1.

The sample used for analyzing individual income growth rates imposes two additional conditions,

similar to the case of firm sales, on the sample of income size. The first condition is that the individual’s

initial income must be at least 4 million yen. The second condition pertains to individual’s age. Only

individuals who were between 25 and 60 years old as of 2014 are included in the sample.

The summary statistics of growth rates for these samples are provided in Table 2. This table shows the

summary statistics for one-year growth rates across different years, as well as statistics for growth rates over

longer periods, with 2014 as the initial year. Similar to the case of firm sales growth rates, the fluctuations in

one-year growth rates remain remarkably stable during the sample period from 2014 to 2020. Furthermore,

as the length of the period increases, the fluctuations in growth rates become larger. The similarity between

the distribution of firm sales growth rates and individual income growth rates will be analyzed in detail in

the following section.
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Table 4: Summary statistics of the growth rates of individual’s income. Here, I present the summary statistics for the
one-year firm growth rates for different years, as well as the growth rate statistics for longer periods with 2014 as the
initial year. For example, g_20_14 represents the summary statistics for the growth rate from 2014 to 2020.
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4.2 Random walk assumption

In this section, we examine the assumption in our explanation that growth rates are independent random

variables. A widely used measure for analyzing dependencies between variables is Pearson’s correlation

coefficient; however, we do not use it here (see the Appendix). Instead, we use Spearman’s ρS as an alternative

measure. Spearman’s ρS ranges from −1 to 1, and it equals 0 if the two variables are independent.

While Spearman’s ρS provides insights into dependencies between growth rates, this coefficient is

strongly influenced by dependencies in regions with more abundant samples, namely the central region.

It may not adequately capture dependencies in the tail region, specifically in cases of extreme values. To

address this concern, we use the tail dependence coefficient. This coefficient measures the likelihood that

one variable takes an extreme value given that another variable also takes an extreme value and is defined as

follows:

λU := lim
q→1

P(X2 > F−12 (q) | X1 > F−11 (q))

Intuitively, this coefficient can be interpreted as the probability of a large deviation in the second period, given

a large deviation in the first period. When λU takes a positive value (i.e., the conditional probability above

converges to a positive value), the two variables are said to exhibit tail dependence. If λU = 0, the variables

are said to exhibit tail independence. λU = 0 suggests that large deviations do not occur consecutively.

Furthermore, as another measure of dependence in the tail region, we introduce the conditional tail

expectation:

E[X2|X1 > t]

We examine the behavior of this function as t → ∞. For example, if X1 and X2 represent growth rates

in consecutive periods, then the conditional tail expectation can be viewed as the expected growth rate

in the second period for firms that achieved high growth in the first period. If the two random variables

are completely independent, this function would remain constant regardless of t. In contrast, if there is tail

dependence (i.e., λU > 0), this function becomes a linear increasing function of t (i.e.,E[X2|X1 > t] ∼ O(t)

as t→ ∞) (see Section 2.20 in Joe (2014)).

Finally, to examine the extent to which dependence in the tail region leads to consecutive extreme

values, we consider the frequency of occurrences where Xk > F−1k (p) within the sample period for each

agent, where p is a value close to 1. If the random walk assumption holds, the frequency of occurrences

should follow a binomial distribution:

P(# of occurrences = x) =

(
n

x

)
px(1− p)n−x

We also calculate the frequency of the longest consecutive occurrences ofXk > F−1(p) (i.e., longest success

run) within a sample period. These results are compared with those obtained from computer simulations

under the random walk assumption.
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Table 5: Matrix of Spearman’s ρS . Samples are the same as in Table 2.

Firm sales

We apply the above method to the growth rates of firm sales. The correlation matrix of growth rates for

different years, calculated using Spearman’s ρS , is shown in Table 5. As expected, the coefficients approach

0 as the time interval between the two growth rates increases. Additionally, as indicated in the table, even

for consecutive periods, the absolute value of the coefficients is below 0.1 and close to 0.21 In the following

sections, we focus on consecutive periods and analyze them in greater detail.

Figure 9(a) shows the tail dependence measure for growth rates in 2010 and 2011 (more precisely,

the conditional probability within the definition of λU ) and how it changes as q → 1. As q → 1, the tail

dependence measure decreases and approaches 0. This suggests that growth rates in consecutive periods

become closer to tail independence as higher growth rates are considered. The results for the conditional

tail expectation are shown in Figure 9(b). Here, considering that growth rates can take both positive and

negative values, we calculate the conditional tail expectations for Xk1Xk>0. As t increases, the conditional

tail expectation does not behave as an increasing function; rather, it remains nearly constant with respect

to t. In other words, achieving high growth in the preceding period does not increase the probability of

continued high growth in subsequent periods. This observation aligns with the results of the tail dependence

measure λU , further indicating that the dependence between growth rates in the positive tail region (i.e.,

high-high relationships) is weak. Thus, this provides evidence supporting the validity of using the random

walk assumption in our analysis.

The results for the frequency of high growth Xk > F−1k (p) are shown in Figure 10. Here, we consider

21Spearman’s ρS = 0 does not necessarily imply the independence of the two random variables across all regions of the distribution.
As discussed in the Appendix, the semi-correlation coefficient, which measures dependency in the positive region (i.e., X1 >

0, X2 > 0), for growth rates in 2019 and 2020 is ρ+N = 0.278 and ρ−N = 0.274, respectively. This suggests that when the range is
restricted to the positive region, the dependency is stronger than when considering the entire distribution.
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(a) Tail dependence measure (b) Conditional tail expectation

Figure 9: Tail dependence measure and conditional tail expectation. In Panel(a), the conditional tail expectation of
Xk1Xk>0 (on the y-axis) are plotted as a function of q (on the x-axis).

(a) p = 0.95 (b) p = 0.97 (c) p = 0.99

Figure 10: Histogram of the occurrence frequency of growth rates greater than F−1(p) and the binomial distribution.

high growth thresholds at p = 0.95, 0.97, 0.99. As the figure shows, the histogram of the frequency ofXk >

F−1k (p) calculated from the empirical data is very close to the theoretical values of a binomial distribution.

Therefore, the dependence does not have an significant impact on the tail region for p = 0.95, 0.97, 0.99. In

other words, there is no evidence that high growthXk > F−1k (p) is disproportionally concentrated in specific

firms. A similar result can be observed for the longest success run. Figure 11 compares the histogram of the

frequency of the longest success runs with that of an iid simulation. As the figure shows, when considering

high growth thresholds such as p = 0.95, 0.97, 0.99, the two histograms are very close. This indicates that

in the tail region, high growth is not driven by dependence between growth rates, and the growth rates can be

well-approximated as iid. These results suggest that, when focusing on the tail region, which is of primary

interest, the random walk assumption is empirically reasonable.
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(a) p = 0.95 (b) p = 0.97 (c) p = 0.99

Figure 11: Histograms of the frequency of the longest success runs and for the i.i.d. case calculated from simulations.

Table 6: Matrix of Spearman’s ρ. Samples are the same as in Table 2.

Individual income

We describe the results for individual income growth rates. The correlation matrix of growth rates

for different years, calculated using Spearman’s ρS , is shown in Table 6. As the time interval between

two growth rates increases, the coefficients approach 0. Even for consecutive periods, the coefficients are

below 0.1 and close to 0. Similar to the case of firm sales, when considering dependence across the entire

distribution, the dependence between growth rates is weak.

Figure 12(a) illustrates how the tail dependence measure for growth rates in 2015 and 2016 changes as

q → 1. As q → 1, the tail dependence measure decreases and approaches 0. The results for the conditional

tail expectation of the non-negative variable Xk1Xk>0 are shown in Figure 12(b). As t increases, the

conditional tail expectation is not an increasing function but rather remains nearly constant with respect to

t. These results indicate that the dependency between growth rates in the positive tail region (i.e., high-high

relationships) is weak. Since our focus is on dependency in the tail region, these findings support the validity

of using the random walk assumption in our theoretical explanation.

Finally, to examine dependence in the positive tail region (i.e., cases where high growth occurs consec-

utively), we calculate the frequency of occurrences where Xk > F−1k (p) and the frequency of the longest
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(a) Tail dependence measure (b) Conditional tail expectation

Figure 12: Tail dependence measure and conditional tail expectation. In Panel(a), the conditional tail expectation of
Xk1Xk > 0 (on the y-axis) are plotted as a function of q (on the x-axis).

(a) p = 0.95 (b) p = 0.97 (c) p = 0.99

Figure 13: Histogram of the occurrence frequency of growth rates greater than F−1(p) and the binomial distribution.

success run for each individual during the sample period. The results are presented in Figure 13 and

Figure 14. When considering high growth at levels of p = 0.95, 0.97, 0.99, the histogram of high growth

occurrences is close to the theoretical prediction of a binomial distribution under the assumption of iid growth

rates. The histogram of the longest success run frequency is also very similar to the histogram obtained from

simulations under the i.i.d. assumption. This suggests that in the tail regions, such as p = 0.95, 0.97, 0.99,

high growth is not concentrated within certain groups, and the i.i.d. case (i.e., our random walk assumption)

provides a reasonable approximation.

As demonstrated, the dependency structures of firm sales growth rates and individual income growth

rates are quite similar to each other. Specifically, the dependence in the tail regions can be reasonably

approximated by independence. Given that our theoretical explanation in Section 3 relies solely on such

statistical properties, it is natural that Zipf’s law applies similarly to both phenomena when the underlying

statistical characteristics are alike. In the next section, we will test the other key assumption of our model,

namely that the growth rate distribution follows a Weibull tail.
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(a) p = 0.95 (b) p = 0.97 (c) p = 0.99

Figure 14: Histograms of the frequency of the longest success runs and for the i.i.d. case calculated from simulations.
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4.3 Growth rate distribution

In this section, we estimate whether the growth rates follow subexponential distributions, specifically

Weibull-tail distributions. We analyze the growth rate distribution using the following methods: density

function estimation, statistical tests for exponentiality, the mean excess function, and tail shape estimation as

proposed by Gardes et al. (2011) and El Methni et al. (2012). These methods are explained below.

The mean excess function for the threshold u (denoted as e(u)) is defined as the conditional expected

value of the overshoot Xk − u, given that Xk > u (see, e.g., Embrechts et al. (1997)):

e(u) := E[X − u | X > u] for u > 0.

The reason for using the mean excess function is that its shape reflects the heaviness of the tail of the

distribution ofX . In particular, our analysis focuses on the following three cases: When the distribution has

an exponential tail, e(u) remains constant regardless of u. When the distribution has a Pareto tail, e(u) is

a linearly increasing function of u. When the distribution has a Weibull tail, it lies between the two cases

above. Specifically, as u increases, it is known that e(u) can be written as follows:

e(u) =
u1−α

cα
(1 + o(1))

as u→ ∞ (cf. Beirlant et al. (1995)). By estimating the empirical mean excess function using growth rates,

we can characterize the heaviness of the distribution’s tail.

To statistically show that the tail of the distribution is subexponential, we set the null hypothesis that

the tail follows an exponential function and test whether this hypothesis can be statistically rejected. While

various statistical tests for exponentiality have been proposed (see Ascher (1990), Henze and Meintanis

(2005) for surveys), Ascher (1990) suggests that the Cox-Oakes test, proposed by Cox and Oakes (1984),

possesses the strongest statistical power. We apply the Cox-Oakes test to the following two subsamples of

growth rates: samples with Xk ≥ 0.1 and samples with Xk ≥ 0.2.

As discussed in Section 3.2, within the family of subexponential distributions, there are two groups:

those with Pareto tails and Weibull tails. In particular, our analysis needs to confirm that the growth rate

distribution can be approximated by a Weibull tail. As a graphical method, we use the following linear

relationship, which holds if the distribution has a Weibull tail. For 0 < u < v < 1,

log(− log u)− log(− log v) ≈ α(log xu − log xv)

Here, xu and xv are the u-quantile and v-quantile values of the growth rates, respectively. Specifically, letting

N be the sample size and XN−i+1 the i-th largest growth rate value, if the growth rate distribution follows

a Weibull tail, the points (log log(N/i), logXN−i+1) should plot as a straight line. Using this property, we

verify whether the empirical distribution of growth rates can be approximated by a Weibull tail.

To statistically determine which of these two groups the empirical distribution of growth rates is closer

to, we use the methods proposed by Gardes et al. (2011) and El Methni et al. (2012). Define the following
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(a) Normal scale (b) Log scale

Figure 15: The distributions of annual growth rates. Here, we provide the density function estimation for the
distribution of annual growth rates during the sample period (2010 to 2020). In panel (a), the y-axis is on a normal
scale, while in panel (b), the y-axis is on a log scale.

family of distributions that encompass both Pareto-type and Weibull-type tails:

F (x) = exp(−K←τ (logH(x))) for x ≥ x∗ > 0, with τ ∈ [0, 1] (4)

Here, H is a function such that its inverse H← is given by H←(t) = tθL(t), θ > 0 (where L(t) is a slowly

varying function) andKτ (x) =
∫ x
1 u

τ−1du. A larger value of τ means a heavier tail of the distribution, with

τ = 0 corresponding to a Weibull-type tail and τ = 1 corresponding to a Pareto-type tail. The parameter

α = θ−1 is the shape parameter for each distribution tail corresponding to τ . Therefore, by estimating the

value of τ , we can assess how well the Weibull tail assumption approximates the empirical data.

Firm sales

Here, we apply the above methods to the growth rates of firm sales. The results of the density estimation

are presented in Figure 15. As shown in Figure 15(a), consistent with previous studies, the distribution

deviates from a normal distribution, exhibiting a sharp peak in the center and heavier tails. Additionally,

Figure 15(b) shows that the tail of the distribution on a log scale is curved rather than linear, indicating

that the tail is heavier than that of an exponential function. This provides evidence that the distribution

is subexponential. Next, we consider the distribution of longer-term growth rates. Figure 16 shows the

distribution of growth rates over n periods (n = 1, 2, . . . , 10). Figure 16(a) illustrates that as n increases,

the density around 0 approaches a bell-shaped curve. As shown in Figure 16(b), the density in the right

tail region appears nearly linear on a log scale. Additionally, as n increases, the linear portion of the tail in

the density function appears to shift upward in parallel. These characteristics are consistent with the shape

described in Section 3.2.

The mean excess function for growth rates is shown in Figure 17. In all years, the estimated e(u) is
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(a) Normal scale (b) Log scale

Figure 16: The distributions of long-term growth rates. Here, we provide the density function estimation for the
distribution of n-year growth rates during the sample period from 2010 to 2020 (n = 1, 2, ..., 10). The initial period
for the k-year growth rates is 2010 for all n. In panel (a), the y-axis is on a normal scale, while in panel (b), the y-axis
is on a log scale.

an increasing function of u, indicating that the distribution has heavier tails than an exponential distribution.

Moreover, statistical testing using the Cox-Oakes test shows that exponentiality is rejected in all cases with

p-values below 1%. In particular, Figure 17(b) shows that the shape of e(u), particularly in the tail region,

appears to be largely independent of n. This aligns with the property of subexponential distributions,

where the tail probabilities of n-year growth rates match those of one-year growth rates except, apart from

a multiplier factor. This provides further evidence that the growth rate distribution is subexponential.

Furthermore, in all the figures, e(u) is an increasing function of u, but its slope decreases as u becomes

larger. This suggests that the growth rate distribution is closer to a Weibull tail than a Pareto tail. We examine

in more detail below whether the distribution is closer to a Pareto tail or a Weibull tail.

Finally, we examine whether a Weibull tail can approximate the tail of the growth rate distribu-

tion. In Figure 18(a), we plot (log log(N/i), logXN−i+1), considering the top 5% of the growth rate

samples from one-year growth rates (i.e., i = 1, . . . , 0.05N ). As shown in the figure, the plot of

(log log(N/i), logXN−i+1) aligns closely with a straight line, indicating that the tail of the growth rate

distribution is well approximated by a Weibull tail. The estimation results for τ in Eq.(4) are shown in

Figure 18(b). Since the estimation of τ uses only the top kn samples, the x-axis represents the number

of samples kn, while the y-axis shows the estimated values of τ for each kn. Figure 18(b) shows that the

estimates are close to zero, further supporting that a Weibull tail provides a better approximation within the

class of subexponential distributions. Furthermore, using the estimated τ , we calculate the other parameter

α, and based on Eq.(4), compare the estimated tail probabilities with the counter cumulative distribution

function (i.e., 1 − Fn(x), where Fn is the empirical distribution). This comparison is presented in Fig-
ure 18(c). The estimated tail probabilities closely approximate the tail probabilities of the growth rates.
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(a) One-year growth rates (b) k-year growth rates

Figure 17: Mean excess function over threshold u. Here, we present the mean excess function of the one-year growth
rate for the sample period from 2010 to 2020 in panel (a), and the mean excess function of the n-year growth rate
(n = 1, 2, ..., 10) in panel (b). The initial period for the n-year growth rates is set to 2010 for all n. The standardized
Cox-Oakes test statistic is −54.4 for Xk > 0.1 and −38.9 for Xk > 0.2, both of which allow the null hypothesis of
exponentiality to be rejected at a p-value below 0.01.

These results, consistent with the findings of the mean excess function, support our assumption that the

growth rate distribution of firm sales follows a Weibull tail.

Individual income

Here, we examine the tail of the growth rate distribution for individual incomes. Figure 19 and

Figure 20 present the density estimates for one-year growth rates and n-year growth rates (n = 1, 2, . . . , 6),

respectively. As in the case of firm sales, it is evident that the growth rate distribution deviates from a

Gaussian distribution and has heavier tails than an exponential function. Moreover, as n increases, the

density around 0 approaches the shape of a Gaussian distribution, while its tail retains a nearly linear shape

on a logarithmic scale. These characteristics indicate that the growth rate distribution is subexponential.

The estimation results for the mean excess function of growth rates are shown in Figure 21. Similar

to the case of firm sales, e(u) is an increasing function of u in all years, indicating that the distribution

has heavier tails than an exponential function. Furthermore, for the n-year growth rates (n = 1, 2, . . . , 6)

shown in Figure 21(b), the shape of e(u) in the tail region does not depend on n. Indeed, statistical tests

for exponentiality reject the null hypothesis with p-values below 1%. These results indicate that the tail of

the growth rate distribution is not exponential but heavier, confirming that the distribution is subexponential.

Moreover, the slope of e(u) decreases as u becomes larger, suggesting that the growth rate distribution is

closer to a Weibull tail than a Pareto tail.

Figure 22 presents the plot of (log log(N/i), logXN−i+1) for the growth rates of individual incomes.

The plot aligns closely with a straight line, indicating that the tail of the growth rate distribution follows a
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(a) Linear relation (b) Estimate of τ (c) Estimate of the tail probability

Figure 18: Parameter estimates of the tail probability of growth rates. Here, we use the one-year growth rate for
2020. We consider the top 5% of growth rates in our samples. In Panel (a), (log log(n/i), logXn−i+1) is plotted. In
Panel (c), we calculate Eq.(4) based on the estimated τ and α. For comparison, we also plot the counter cumulative
distribution function of growth rates.

(a) Normal scale (b) Log scale

Figure 19: The distributions of annual growth rates. Here, we provide the density function estimation for the
distribution of annual growth rates during the sample period (2014 to 2020). In panel (a), the y-axis is on a normal
scale, while in panel (b), the y-axis is on a log scale.
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(a) Normal scale (b) Log scale

Figure 20: The distributions of long-term growth rates. Here, we provide the density function estimation for the
distribution of n-year growth rates during the sample period from 2014 to 2020 (n = 1, 2, ..., 6). The initial period for
the n-year growth rates is 2014 for all n. In Panel (a), the y-axis is on a normal scale, while in panel (b), the y-axis is
on a log scale.

(a) One-year growth rates (b) k-year growth rates

Figure 21: Mean excess function over threshold u. Here, we present the mean excess function of the one-year growth
rate for the sample period from 2014 to 2020 in Panel (a), and the mean excess function of the n-year growth rate
(k = 1, 2, ..., 6) in Panel (b). The initial period for the n-year growth rates is set to 2014 for all n. The standardized
Cox-Oakes test statistic is −344.8 for Xk > 0.1 and −182.6 for Xk > 0.2, both of which allow the null hypothesis of
exponentiality to be rejected at a p-value below 0.01.
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(a) Linear relation (b) Estimate of τ (c) Estimate of the tail probability

Figure 22: Parameter estimates of the tail probability of growth rates. Here, we use the one-year growth rate for
2020. We consider the top 5% of growth rates in our samples. In Panel (a), (log log(n/i), logXn−i+1) is plotted. In
Panel (c), we calculate Eq.(4) based on the estimated τ and α. For comparison, we also plot the counter cumulative
distribution function of growth rates.

Weibull tail. Furthermore, the estimation results for τ in Eq.(4), shown in Figure 18(b), are close to τ = 0.

As shown in Figure 18(c), the tail probabilities calculated using the estimated values of τ and α in Eq.(4)

closely approximate the counter cumulative distribution function. These results, consistent with the case of

firm sales, indicate that the growth rate distribution follows a Weibull tail.
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(a) Density estimates (b) Mean excess functions

Figure 23: The distribution of the initial size S0. Here, we consider the logarithm of the income S0 of individuals that
are 25 years old during the sample period (2014 to 2020). Panel (a) provides a density estimate of these samples, with
the y-axis presented on a log scale. Panel (b) presents the mean excess function of S0.

5 Empirical results: implications

In this section, we empirically evaluate three implications to determine whether the existing models or

our theoretical explanation aligns more closely with the data.

5.1 Tail exponent

As discussed in Section 3.3, the slope of the tail of the size distribution on a log scale is determined

by the weighted average of the tail slopes of the initial size S0 distribution and the growth rate distribution.

In particular, when the tail slopes of the growth rate distribution and S0 distribution are equal, the size

distribution shares the common slope, and an increase in n shifts the straight line upward in parallel. When

the tail slopes of the growth rate distribution and S0 distribution differ, the slope of the size distribution

approaches the tail slope of the growth rate distribution as n increases. In this section, we use data to estimate

the tail slopes of the size distribution, S0 distribution, and the growth rate distribution to verify whether

the above properties hold. In the previous literature, it has been shown that the tail slopes of firm sales

distributions and individual income distributions differ, and we examine whether this difference aligns with

our theoretical explanation.

Consider the distribution of S0 for individual income. For individual income, S0 is defined as the

income of individuals who are 25 years old in 2014. The density estimate and mean excess function of the

distribution of S0 are provided in Figure 23. As evident from the figure, the observed heterogeneity in S0 is

significant. The tail slope of the distribution of S0, estimated using the Hill estimator, is 1.746, while the tail

slope of the distribution of S in 2020 is 1.80. This suggests that the distributions of S0 and S have similar

tail exponents.
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(a) Density estimates (b) Mean excess functions

Figure 24: Here, we consider the logarithm of the sales S0 of firms that are five years old during the sample period
(2010 to 2020). Panel (a) provides a density estimate of these samples, with the y-axis presented on a log scale. Panel
(b) presents the mean excess function of S0.

To estimate the tail slope of the growth rate distribution, we use the distribution of six-year growth

rates S̃6, starting from 2014. The tail slope of this distribution, estimated using Hill’s method, is 1.892.

The difference between the tail slopes of the distribution of S0 and the growth rate distribution is small.

Therefore, according to Section 3.3, the tail exponent of the distribution for each age group should also be

close to the tail exponents of the S0 distribution and the growth rate distribution. As shown in Fig. (fig, tail

expo)(b), the tail exponents of the distribution of Sn for each age group are clustered around 1.8, regardless of

n. This result is consistent with our explanation that the tail exponent of the distribution of Sn is determined

by a weighted average of the tail exponents of the distribution of S0 and the growth rate distribution.

Next, consider the distribution of S0 for firm sales. Here, S0 is defined as the logarithmic value of sales

in 2010 for firms established in 2005. The density estimate and mean excess function of the S0 distribution

are shown in Figure 24. As evident from the figure, the heterogeneity of S0 is significant, with some firms

positioned in the tail of the overall sales distribution despite n = 0. Furthermore, the tail slope of the S0
distribution on a log scale, estimated using Hill’s method, is 0.860. The tail slope of the S distribution in

2020 is 1.104, indicating that the S0 distribution has a heavier tail compared to the S distribution.

To estimate the tail slope of the growth rate distribution, we use the distribution of 10-year growth

rates S̃10, starting from 2010. The tail slope of this distribution, estimated using Hill’s method, is 1.913.

This indicates that the distribution of S0 has a heavier tail than the growth rate distribution when comparing

their tail slopes. According to Section 3.3, if the tail slopes of the distribution of S0 and the growth rate

distribution remain constant over time, the slope of the distribution of Sn should gradually converge to

that of the growth rate distribution as n increases. In other words, the value of the tail exponent a should

increase. This is demonstrated in Fig (fig, tail expo)(a). As evident from the figure, older groups exhibit

larger tail exponents, indicating that the tails of the distributions of Sn become lighter as n increases. Thus,
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(a) Firm sales (b) Individual incomes

Figure 25: Estimates of tail exponents. Panel (a) provides the Hill estimates for Sn (n = 11, ..., 40) as of 2020, based
on the number of samples used for the estimation (i.e., the x-axis represents the number of samples used in descending
order).

our theoretical explanation, which posits that the slope of the distribution of Sn is determined by a weighted

average of these two tail exponents, is consistent with this result.
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5.2 Age composition in the tail of the size distribution

The proportion of the tail of the size distribution occupied by agents of different ages serves as a key

distinction between existing models and our theoretical explanation. As shown in Section 5.1, the tail of the

size distribution Sn for each generation can be approximated on a logarithmic scale as follows:

logP(Sn > x | age = n) ≈ −anx+ bn.

In particular, suppose that the slopes are common across generations, i.e., a1 = a2 = · · · =: a. If

pn := P(age = n) represents the proportion of agents of age n in the overall population, then the distribution

of size S, aggregated across different generations, can be expressed as:

logP(S > x) = log
∑
n

pnP(Sn > x | age = n) ≈ log
((∑

n

pne
bn
)
e−ax

)
= −ax+ b

where b := log
∑

n pne
bn . In other words, if the tail of the size distribution of each generation shares a

common slope a, the tail of the overall size distribution also share the same slope a. In this case, note that

logP(Sn > x | age = n) − logP(S > x) = const., meaning that the ratio P(Sn>x|age=n)
P(S>x) is a constant,

independent of x. Thus, the proportion of agents of age n occupying the tail of the size distribution S is

given by:
P(Sn > x, age = n)

P(S > x)
= pn

P(Sn > x | age = n)

P(S > x)
= const.

That is, the proportion of each generation occupying the tail of the overall size distribution depends only

on n and is independent of x. This explains why Zipf’s law holds for the overall size distribution in our

theoretical explanation.

The above property is confirmed using individual income data, as shown in Figure 5(b). As evident

from the figure, the proportion of each generation contributing to the tail probability remains stable across

a wide range of x. This contrasts with the predictions of existing models, which suggest that the tail of

the size distribution becomes increasingly dominated by older agents as x increases. Therefore, this result

supports our theoretical explanation that the Zipf’s law for the overall size distribution does not arise from

the superposition of distributions from different generations, but rather that Zipf’s law already holds within

the size distribution of each generation.

The results for firm sales are shown in Figure 3(a). This figure suggests that the proportion of younger

firms increases as x grows. Strictly speaking, this result deviates from Zipf’s law, but it aligns with the

findings in Section 5.1 regarding how such deviations occur. Specifically, in the case of firm sales, the tail

slope of the initial size distribution S0 is heavier than that of the growth rate distribution. As a result, when

n is small, the tail slope of the size distribution tends to be closer to the tail slope of S0’s distribution. Thus,

in the tail of the size distribution S, the proportion of younger firms increases with x when n is small. This

result is consistent with the findings in Section 5.1 and supports our theoretical explanation.
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Figure 26: Histogram of r for the subsample satisfying the condition X10 +X11 > u. The value of u increases from
0.1 (top left) to 1.9 (bottom right) in increments of 0.2.

5.3 Jump-driven growth processes

Here, we verify the implications discussed in Section 3.4 that the large deviation of S̃n is determined not

by the average growth over n periods but by rapid growth in a specific period, i.e., a jump. First, considering

the growth rates Xk, Xk+1 and their sum Xk +Xk+1, let us define the following ratio:

r :=
Xk

Xk +Xk+1

By definition, the sum Xk + Xk+1 represents the agent’s growth rate over two years, and r indicates the

contribution of the first year’s growth rate to the total growth rate over these two years. For instance, if the

growth rates are 3% in the first year and 3% in the second year, r becomes 1/2, meaning that both years

equally contribute to the two-year growth rate. Since Xk is assumed to be an i.i.d. random variable in our

analysis, the distribution of r is symmetric around 1/2. We test whether the event r = 1/2, indicating equal

contributions from the first and second years to the total growth rate, is the most likely scenario. According

to Section 3.4, if the growth rate distribution is subexponential, then for largeXk +Xk+1, the event r = 1/2

should be the least likely. Using our empirical data, we calculate r for each agent and examine the histogram

of r.

Using the growth rates of firm sales for 2010 and 2011, we compute the histogram of r, as shown in

Figure 26. Here, we construct the histogram of r for samples satisfying the condition X10 +X11 > u and

analyze how the histogram changes as u increases. The value of u ranges from 0.1 to 1.9 in increments of

0.2. As shown in Figure 26, when u is small, the histogram of r peaks at 1/2. This indicates that when

the two-year growth rate is low, the growth rates of both 2010 and 2011 contribute almost equally to the

total two-year growth rate, making this the most likely event. In contrast, as u increases (e.g., u ≥ 0.9), the

histogram of r exhibits peaks near 0 and 1. This suggests that high two-year growth rates are driven by an

exceptionally large growth rate in either 2010 or 2011. In other words, instead of both years contributing

equally to the high growth rate, rapid growth—or a jump—occurs in one of the years, making this the most

likely event leading to the high overall growth rate.

A similar result is observed for the growth rates of individual incomes. The results for individual income

growth rates are shown in Figure 27. Here, we consider the contribution of the first three-year growth rate
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Figure 27: Histogram of r for the subsample satisfying the condition
∑2020

k=2015Xk > u. The value of u increases
from 0.1 (top left) to 2.7 (bottom right) in increments of 0.2.

to the total six-year growth rate, expressed as the ratio r, for the period from 2014 to 2020. The value of

u ranges from 0.1 to 2.7 in increments of 0.2. As with the growth rates of firm sales, when u is small, the

histogram of r peaks at 1/2. This indicates that when the six-year growth rate is low, the growth rates of

both the first and second three-year periods contribute almost equally to the total growth rate, making this the

most likely event. However, as u increases (e.g., u ≥ 0.9), the histogram exhibits peaks near 0 and 1. This

suggests that instead of both three-year periods contributing equally to the high growth rate, rapid growth

occurs in one of the periods, resulting in the overall high growth rate being most likely driven by a single

period.22 These results are consistent with the subexponential property discussed in Section 3.4 and directly

demonstrate the principle of a single big jump.

Next, we examine the conditional probability of growth rates given a large deviation in S̃n. Specifically,

according to our theoretical explanation, high growth over n periods (S̃n > x) is realized through rapid

growth in a single period (i.e., a jump), while the distribution of the remaining n − 1 smallest growth

rates should match the unconditional growth rate distribution. Therefore, the distribution of the minimum

value of the n− 1 smallest growth rates for each agent satisfying this condition should match the minimum

value of n − 1 growth rates drawn from the unconditional growth rate distribution. In contrast, if the

growth rate distribution is light-tailed, the conditional probability of growth rates given S̃n > x would differ

from the unconditional distribution. In particular, if the growth rate distribution is Gaussian, the conditional

probability of growth rates given S̃n > xwould shift the mean by x/n in the positive direction. To determine

which of these two cases the data aligns with, we divide the samples into agents who satisfy S̃n > x and

those who do not. We then compare the histograms of the minimum values of n − 1 growth rates for each

22Here, we are essentially determining the distribution of the variable r for a very small subsample that satisfies S̃n > u. As such,
the sample size plays a critical role in observing the shape of the distribution of r. Compared to the firm sales data, the individual
income data has a larger sample size, making it sufficient to observe the shape of the distribution of r under the condition S̃n > u.
Indeed, compared to Figure 26, Figure 27 more clearly demonstrates the characteristic shape of the subexponential property.
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(a) Firm sales growth (b) Individual income growth

Figure 28: Comparison of histograms of the smallest value among n individual growth rates. The histograms are
compared between agents that achieve S̃n > x and those that do not.

agent. By examining whether the histograms of these two samples differ by approximately x/n or are almost

identical, we can distinguish between the two cases described above.

For the growth rates of firm sales, we use the 97th percentile value as the threshold for large deviations in

S̃n overn = 10 periods. From the data, the 97% percentile value of S̃n is 0.926. If the growth rate distribution

were Gaussian, the conditional probability distribution would shift approximately 0.926/10 = 0.0926 to

the right. Figure 28(a) compares the histograms of the minimum growth rate for each firm between the

group that satisfies S̃n > 0.926 and the group that does not. As shown in the figure, the distributions of the

minimum growth rates for the two groups are very similar. In fact, the medians of the minimum growth rates

are −0.198 for the group satisfying S̃n > x and −0.201 for the group that does not, with a difference of only

0.003. Given that the expected difference of 0.0926 for a Gaussian distribution, the observed difference in

the histograms is negligible.

Similarly, the results for the growth rates of individual incomes are shown in Figure 28(b). Here,

with n = 6, the 97% percentile value of the growth rate S̃n over this period is 0.891. Thus, if the

growth rate distribution were Gaussian, the conditional probability distribution would shift approximately

0.891/10 = 0.0891 to the right. As shown in Figure 28(b), the histograms of the minimum growth rates for

individuals in the group satisfying S̃n > x and those not satisfying it are very similar. The medians of the

minimum growth rates for these groups are −0.0947 and −0.112, respectively, with a difference of 0.017.

Compared to the expected difference of 0.0891 for a Gaussian distribution, the observed difference in these

distributions is small.

These results on the ratio r and the conditional probability demonstrate that the large deviation in S̃n
is driven by a jump occurring in some (but unspecified) period. Therefore, these findings provide evidence

that our theoretical explanation aligns better with the data compared to existing models.
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6 Conclusion

Zipf’s law is a characteristic feature that commonly appears in the tail of various distributions, such

as firm sales and individual incomes, and has long attracted the attention of many economists. However,

recent theoretical and empirical studies have pointed out discrepancies between existing models and data,

particularly regarding the time required for growth and convergence to a steady state. We proposed an

alternative explanation for Zipf’s law to resolve discrepancies with the data. Using Japanese firm-level data

and individual income data, we verified that our theoretical explanation aligns with the observed data.

The main idea of this paper is that there are two distinct patterns that generate giant firms or super-rich

individuals. The first pattern assumes a light-tailed growth rate distribution, where moderate growth rates

sustained over a long period result in the emergence of giant firms or super-rich individuals. Existing models

are based on this growth pattern, leading to discrepancies with data, such as the excessively long time required

for firms to become giant or individuals to become super-rich, as well as for convergence to a stationary

distribution. In contrast, the second pattern assumes a heavy-tailed growth rate distribution, where a single

large deviation in growth rate—a jump—can lead to giant firms or super-rich individuals. Our explanation

is based on this growth pattern, which resolves the issues pointed out in existing models.

It is important to note that our conclusions are derived from statistical properties observed in empirical

data. Rather than relying on economic models of firm behavior or individual decision-making, our explana-

tion is grounded in the statistical properties of distributions, allowing it to be applied to both firm sales and

individual incomes. Our explanation is an example that demonstrates how the logic of probability forms the

basis of the statistical universality observed in economic phenomena.
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7 Appendix: Copula Theory

7.1 Why is copula theory needed?

Examining the dependence between growth rates, particularly the dependence between consecutive

growth rates Xt and Xt+1, is crucial for understanding the growth dynamics of firm sales and individual

incomes. In previous studies, the measure most commonly used to quantify this type of dependence has

been Pearson’s correlation coefficient:

Corr(Xt, Xt+1) = E[(Xt − µt)(Xt+1 − µt+1)]

Here, µt and µt+1 denote the mean growth rates for each period, respectively.

However, it is known in statistics that Pearson’s correlation coefficient does not exclusively represent

the dependence between two random variables (cf. Embrechts et al. (2002)). This is because Pearson’s

correlation coefficient is influenced not only by the dependence between the variables but also by their

marginal distributions. In other words, Pearson’s correlation coefficient can change with changes in the

marginal distributions, even if the dependence structure between the two random variables remains the

same. For example, if h1 and h2 are strictly increasing functions, the Pearson correlation coefficient of Xt

and Xt+1 does not necessarily equal that of h1(Xt) and h2(Xt+1). This property of Pearson’s correlation

coefficient makes it difficult to discern whether it reflects the strength of dependence or merely the marginal

distributions ofXt andXt+1. This issue is especially relevant in ours case, where the growth rate distributions

deviate significantly from a Gaussian distribution and exhibits heavy tails, making this property of Pearson’s

correlation coefficient problematic.

This issue with Pearson’s correlation coefficient has already been pointed out in the literature on firm

growth dynamics. For example, Bottazzi et al. (2023) addresses this problem by employing a quantile

transition matrix. That is, rather than analyzing the transition probabilities of growth rates Xt and Xt+1

directly, they focus on the transition probabilities of quantiles Ft(Xt) and Ft−1(Xt+1), where Ft and Ft−1

represent the distributions of growth rates in the current and previous periods, respectively. They show that,

along with the dependence in the tails (i.e., extreme values are likely to occur consecutively), there is also a

bouncing effect where an extreme value is likely to be followed by an extreme value in the opposite direction.

Such analyses can be rigorously discussed using copulas, which are introduced below.
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7.2 Introduction to copula theory

The main idea of copula theory is that any bivariate distribution functionF can be uniquely decomposed

as follows:

F (x1, x2) = C(F1(x1), F2(x2))

Here, C is called a copula function, and F1 and F2 are the marginal distributions for X1, X2, respectively.

In other words, C is independent of the marginal distributions, and the dependence structure is uniquely

determined by C. In the following, we analyze the properties of the dependence structure by focusing on the

characteristics of C.

A useful alternative measure for assessing dependence between two random variables is Spearman’s

ρS , which is also employed in Section 4.2:

ρS := Cor [F1 (X1) , F2 (X2)]

This measure is advantageous because it is known to be determined by the copula C as follows:

ρS = 12

∫
[0,1]2

C(u, v)dudv − 3

Since Spearman’s ρ is independent of the marginal distributions, it avoids the issues associated with Pearson’s

correlation coefficient.

Now, what is the typical form of a copula function C? While the copula for two independent variables

(i.e., the independence copula) is uniform with respect to variables U1, U2, what form does the copula take

in cases beyond this simplest case? For instance, the findings of Bottazzi et al. (2023), when expressed in

terms of a copula, imply that functionC has a higher density in the tail region compared to the independence

copula. Is this characteristic unusual? Below, we describe the structure of two commonly used copulas: the

Gaussian copula and the Student-t copula.

First, as a non-parametric method to characterize the copula function C, we consider the empirical

copula (and its density function).

Ĉn(u1, u2) =
1

n

n∑
i=1

I

([
rij − 1

2

n
≤ uj , j = 1, 2

])
Here, r1j , . . . , rnj are the ranks of the jth variable in increasing order. As seen from the definition of

the copula, the copula is a function of F1(X1) and F2(X2), rather than the random variables X1 and X2

themselves. The empirical copula is based on the realizations of F1(X1) and F2(X2).

Gaussian copulas are derived from bivariate Gaussian distributions, expressed as follows:

C(u, v; ρ) = Φ2

(
Φ−1(u),Φ−1(v); ρ

)
Here, Φ2 represents the bivariate Gaussian distribution with parameter ρ, and Φ denotes the univariate

Gaussian distribution. Its density function is given by:

c(u, v; ρ) =
(
1− ρ2

)−1/2
exp

{
−1

2

(
x2 + y2 − 2ρxy

) (
1− ρ2

)}
· exp

{
1

2

(
x2 + y2

)}
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(a) Gaussian copula (b) Student-t copula

Figure 29: Density plots of the copula function C. In both copulas, the parameter ρ set to 0.1.

The density function of the Gaussian copula is provided in Figure 29(a). As can be seen from this graph,

the density values in the tail regions (i.e., around (0, 0) and (1, 1)) become infinite. Note that even copulas

with weak tail dependence, such as the Gaussian copula, exhibit spikes at (0, 0) and (1, 1) (i.e., spikes in the

density plot at (0, 0) and (1, 1) do not necessarily indicate strong tail dependence for that copula).

The second example is the Student-t copula, derived from the Student-t distribution. Its density function

is given by:

t2,ν(y; ρ) =
(
1− ρ2

)−1/2 Γ((ν + 2)/2)

Γ(ν/2)[πν]

(
1 +

y21 + y22 − 2ρy1y2
ν (1− ρ2)

)−(ν+2)/2

This density function is provided in Figure 29(b). A characteristic feature of this Student-t copula is that, for

ρ > 0, it not only shows dependence around the (0, 0) and (1, 1) regions but also indicates dependence in the

(0, 1) and (1, 0) regions. In other words, even with a positive parameter ρ, the Student-t copula, compared

to the Gaussian copula, has the characteristic that extreme values are more likely to be followed by opposite

extreme values.

While plotting the empirical copula and analyzing its shape is often used in the literature, the density

function can be infinite near (0, 0) and (1, 1). To avoid this issue, Joe (2014) recommends transforming the

variables to normal scores and analyzing their plot. Specifically, transforming Xj to Zj = Φ−1 ◦ Fj(Xj),

whereΦ is the standard normal distribution function, and consider the bivariate distributionFN with standard

normal marginals:

FN (Z1, Z2) := C(Φ(Z1),Φ(Z2))

If the copulaC is a Gaussian copula, then FN is a bivariate Gaussian distribution. Thus, if the plot of Z1 and

Z2 calculated from the empirical data deviates from a bivariate Gaussian, it indicates a deviation from the

Gaussian copula. Additionally, the Pearson’s correlation coefficient of these transformed variables Z1 and

Z2 (denoted as ρN ) is also used as a measure of dependence between the variables. Similar to Spearman’s
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(a) Gaussian copula (b) Student-t copula

Figure 30: Density plots of normal scores. The parameters used are the same as those in Figure 29.

ρ, ρN is determined by the copula and is independent of the marginal distributions.

Figure 30 presents Gaussian and Student-t copulas, not in the density plot ofU1 andU2, but transformed

into normal scores, Z1 and Z2 (see also Section 4.2). As shown in the figure, the Gaussian copula takes on

an elliptical shape, while the Student-t copula extends more towards the four corners, resembling a diamond

shape. This reflects the stronger tail dependence of the Student-t copula compared to the Gaussian copula.

Additionally, we consider another measure of dependence using normal scores, known as the semi-

correlation coefficients:
ρ+N = Corr [Z1, Z2 | Z1 > 0, Z2 > 0] ,

ρ−N = Corr [Z1, Z2 | Z1 < 0, Z2 < 0]

These are referred to as the upper and lower semi-correlation coefficients, respectively. These coefficients

represent the correlation in the upper-right and lower-left quadrants of a plot of the sample data.23

The parameters of the copula are estimated using the pseudo-maximum likelihood method proposed

by Genest et al. (1995). This method involves two steps: (1) non-parametrically estimating the parameters

of the marginal distributions (2) estimating the parameters of the copula. By separating the estimation

process into two parts, this method offers the advantage of reducing the overall computational cost involved

in estimation. Furthermore, to verify whether the Student-t copula fits the data significantly better than

the Gaussian copula, we employ Vuong’s method (Vuong (1989)). This method compares the maximum

likelihood of the two models (specifically, the log-likelihood ratio) to test if the maximum likelihoods of the

23When the copula C is a Gaussian copula parameterized by ρ (i.e., when Z1, Z2 follow a Gaussian distribution), the ρ+N (and by
symmetry ρ−N ) can be derived precisely.

Corr [Z1, Z2 | Z1 > 0, Z2 > 0; ρ] =
v1,1(ρ)− v21,0(ρ)

v2,0(ρ)− v21,0(ρ)

Therefore, by comparing this theoretical solution with the actual values obtained from the data, deviations from the Gaussian copula
can be identified.
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two models are statistically significantly different. Here, the two models considered are the Student-t copula

and the Gaussian copula.
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Table 7: Matrix of the correlation coefficients of normal scores ρN . Samples are the same as in Table 2.

7.3 Empirical Results

Firm sales

We apply the above method using growth rate data for firm sales from 2011 and 2012. Figure 31
presents the empirical copula and the plot of normal scores. The density function of the empirical copula

exhibits spikes not only near (1, 1) and (−1,−1), but also near (1,−1) and (−1, 1), which is a characteristic

of the Student-t copula. Additionally, the normal scores plot does not resemble the elliptical shape typical

of a Gaussian copula but instead takes on a diamond shape, characteristic of a Student-t copula.

The fact that the empirical copula is closer to a Student-t copula than a Gaussian copula is also reflected

in the correlation coefficients. As shown in Table 5 and Table 7, both ρS and ρN are close to 0. However,

the semi-correlation coefficients are ρ+N = 0.240 and ρ−N = 0.304, respectively. This indicates that while no

strong positive or negative correlation is observed across the entire distribution, relatively strong correlations

emerge when the range is restricted.

To verify the characteristics of the copula observed above, we now consider the Gaussian copula and the

Student-t copula, and examine which of these better approximates the empirical data. The estimation results

for the parameters of each copula are presented in Table 8. Additionally, the Akaike Information Criterion

(AIC) calculated from the pseudo-maximum likelihood method is provided for each copula. Based on the

AIC, the copula that best fits the data is the Student-t copula with degrees of freedom ν = 2. Furthermore, we

test whether the difference between the Gaussian copula and the Student-t copula is statistically significant

using Vuong’s method. The null hypothesis is rejected with a p-value of less than 0.01. This means that the

Student-t copula provides a statistically significantly better fit compared to the Gaussian copula. This result

also indicates that, when the region is restricted to, e.g., the first quadrant, the actual copula exhibits stronger

dependence than that predicted by a Gaussian copula.
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(a) Pseudo observations (b) Normal scores

Figure 31: Plot of pseudo observations and normal scores of growth rates Xt, Xt+1.

Table 8: Results of pseudo-maximum likelihood of copula families. In this analysis, since the number of parameters
for all considered copula families is equal, the choice based on the Akaike Information Criterion (AIC) is equivalent
to the choice based on likelihood. The statistic used in Vuong’s method is D̂ := log(fS(yi; θ̂

S)/fG(yi; θ̂
G)), where

fS , θS represent the likelihood and maximum likelihood estimate for the Student-t copula, and fG, θG represent those
for the Gaussian copula.

57



(a) Gaussian copula (b) Student-t copula with ν = 1 (c) Student-t copula with ν = 2

Figure 32: Comparison between empirical and model-estimated copulas. The contour plots of the copula C(u, v) are
drawn.

We directly assess how well the estimated Student-t copula fits the data by comparing it to the empirical

copula. Figure 32 presents contour plots of both the empirical copula and the estimated copula. In addition

to the best-fitting Student-t copula, we also provide the contour plot of the estimated Gaussian copula

for comparison. It is evident that the Student-t copula closely approximates the empirical copula. We

also verify whether the estimated Student’s t-copula replicates the observed dependence measures. The

correlation coefficients for the normal scores from the estimated Student’s t-copula with degrees of freedom

ν = 2 are ρ+N = ρ−N = 0.373. These results suggest that the Student’s t-copula captures the characteristics

of the empirical copula well, including the dependence measure.

Individual incomes

We investigate the dependency between individual income growth rates for 2015 and 2016. Figure 33
presents the empirical copula and the plot of normal scores. As evident from the figure, the density function

of the empirical copula exhibits spikes at the four corners, a characteristic of the Student-t copula. The

normal scores plot also takes on a diamond shape, resembling the Student-t copula. Furthermore, the

semi-correlation coefficients are ρ+N = 0.387 and ρ−N = 0.375, indicating stronger correlations in the first

and third quadrants compared to a Gaussian copula.

This property is also confirmed through parameter estimation for the Gaussian copula and the Student-t

copula. The estimation results are presented in Table 10. Based on the AIC criterion, as in the case of firm

sales, the copula that best fits the data is the Student-t copula with degrees of freedom ν = 2. Additionally,

using Vuong’s method, we find that the difference between the Student-t copula and the Gaussian copula is

statistically significant at a p-value of 0.01.

The contour plots of the empirical copula and the estimated copulas are provided in Figure 34. For

comparison, the contour plot of the Gaussian copula is also included alongside the Student-t copula. As

evident from the figure, the Student-t copula closely approximates the empirical copula. Furthermore, the

semi-correlation coefficients estimated from the Student-t copula, ρ+N = ρ−N = 0.396, closely align with the
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Table 9: Matrix of ρN . Samples are the same as in Table 2.

(a) Pseudo observations (b) Normal scores

Figure 33: Plot of pseudo observations and normal scores of growth rates Xt, Xt+1.
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Table 10: Results of pseudo-maximum likelihood of copula families. In this analysis, since the number of parameters
for all considered copula families is equal, the choice based on the Akaike Information Criterion (AIC) is equivalent
to the choice based on likelihood. The statistic used in Vuong’s method is D̂ := log(fS(yi; θ̂

S)/fG(yi; θ̂
G)), where

fS , θS represent the likelihood and maximum likelihood estimate for the Student-t copula, and fG, θG represent those
for the Gaussian copula.

empirical values. These findings suggest that the Student-t copula effectively captures the dependence in

growth rates.

(a) Gaussian copula (b) Student-t copula with ν = 1 (c) Student-t copula with ν = 2

Figure 34: Comparison between empirical and model-estimated copulas. The contour plots of the copula C(u, v) are
drawn.
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