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Abstract

This paper investigates the growth dynamics of firms using the theory of stochastic processes and
corporate tax records covering nearly all firms in Japan. We show that the growth path of high-growth
firms (HGFs) is characterized by a single large jump. Specifically, before the occurrence of this jump,
the growth path of an HGF resembles that of non-HGFs, but it then increases rapidly in size due to
the jump. This growth pattern with jumps is typical (i.e., most likely) for HGFs. To provide further
empirical evidence, we consider the ratio that represents how much the growth rate of the first half of
a given period contributes to the growth rate over the entire period. The histogram of this ratio shows
a U-shaped curve for HGFs, indicating that high growth over the entire period can be explained by
high growth in either the first half or the second half of the entire period (but not both). This U-shaped
curve serves as further evidence that a single large jump determines the growth path of HGFs.
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1 Introduction

What drives the growth of a firm? How do firms grow? These questions about the growth dynamics

of firms are among the most classic and crucial themes in economics. Especially over the past decade,

high-growth firms (HGFs) have been recognized as drivers of job creation, the emergence of new markets,

and economic growth (e.g., Haltiwanger et al. (2017)). Understanding the growth dynamics of HGFs has

now become important not only for researchers but also for policymakers.

However, despite the importance of such HGFs, many empirical studies on firm growth dynamics have

reached the following unpleasant conclusion: we are unable to identify which firms will become HGFs

in the future. While certain variables related to firm growth dynamics, such as age and size, have been

identified, it is understood that economic models have very weak explanatory power and cannot be used to

predict HGFs. For instance, surveying empirical studies, Geroski (2000) concludes as follows: "[t]he most

elementary ’fact’ about corporate growth thrown up by econometric work on both large and small firms is

that firm size follows a random walk." Does this mean that firm growth is completely random and nothing

can be said about it? Is there no way to improve our understanding of firm growth dynamics?

This paper shows that, even if we are unable to identify potential HGFs, we can still gain meaningful

insights into how firms grow. Specifically, our analysis does not rely on any particular optimization model

but rather examines the typical growth path of HGFs by analyzing the statistical regularities observed in

empirical data. Our analysis reveals the most likely growth paths for HGFs. A key assumption in our analysis,

which is extensively tested using empirical data, pertains to the distribution of firm growth rates. It is well

known in the literature that the growth rate distribution has a heavier tail than a Gaussian distribution and is

closer to a Laplace distribution. In our analysis, by examining the growth rate distribution more closely, we

find that the distribution has a tail that is strictly heavier than an exponential. Based on this empirical fact

regarding the shape of the growth rate distribution, our analysis reveals that firm growth is characterized not

by steady, incremental increases, but rather by abrupt, substantial jumps. Until just before these jumps occur,

the growth path of an HGF is indistinguishable from that of non-HGFs, but then, the firm size increases

rapidly due to the jump (see Figure 1). We find that this type of growth pattern is not an exception but rather

the norm.

Our analysis is twofold, consisting of a theoretical analysis using probability theory and an empirical

analysis using comprehensive administrative data from Japan. In the theoretical analysis, we consider

two classes of distributions: light-tailed and heavy-tailed distributions. Light-tailed distributions are those

whose tails are exponentially bounded. This means that the tail probability decreases more rapidly than an

exponential function, implying that the probability of the random variable (i.e., the growth rate of firms)

taking extremely large or small values is low. This class of distributions includes the Gaussian distribution.

The Laplace distribution also belongs to this class but is considered to be on the boundary with the heavy-

tailed distributions class described below. Heavy-tailed distributions are those with tails heavier than an
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(a) Gradual increase (b) Increase by a sudden jump

Figure 1: The image of sample paths for HGFs. The horizontal axis represents time, and the vertical axis represents
firm size. In Panel (a), a firm gradually increases in size, achieving high growth over the entire period through many
small successes. In Panel (b), the firm’s growth path is characterized by a sudden, large jump.

exponential function. This means that the probability of the random variable taking extreme values is higher

than what would be predicted by an exponential. This class of distributions includes distributions with heavy

tails, such as the log-normal distribution and the Pareto distribution. Our theoretical analysis shows that the

properties of firm growth dynamics can vary significantly depending on whether the growth rate distribution

is light-tailed or heavy-tailed.

In our theoretical analysis, we assume that the logarithm of firm size follows a random walk and focus

on the sample paths of firms that experience rapid growth over n periods (i.e., firms whose growth rate over

n periods exceeds a large threshold u). Since the growth rate over n periods is composed of n individual

growth rates, we analyze how these growth rates from each period contribute to the overall growth rate over

n periods and achieve u. By utilizing ruin theory (e.g., Asmussen and Albrecher (2010)), we show that when

the growth rate distribution is light-tailed, high growth rates over n periods are primarily determined by the

cumulative effect of individual growth rates. The growth rate in each period contributes almost equally to

the overall high growth rate over n periods, and thus, the sample path is characterized by a gradual increase,

as illustrated in Figure 1(a). In other words, for a light-tailed distribution of growth rates, the most likely

growth path leading to high growth over n periods is a path characterized by a gradual increase.

In contrast, when the growth rate distribution is heavy-tailed, high growth over n periods is driven by

the presence of a large individual growth rate, or what we refer to as a jump. More precisely, the probability

that the growth rate over n periods exceeds a threshold u is asymptotically equal to the probability that the

maximum of the n individual growth rates exceeds u. That is, high growth over n periods is dominated by a

single burst within one period, making the contributions from growth rates in other periods negligible. The

heavy-tailedness of the growth rate distribution implies that a rare, large jump characterizes the growth path

of HGFs, as illustrated in Figure 1(b).

Given these theoretical backgrounds, our empirical tasks are to (1) verify the random walk assumption
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and (2) test the distribution class to which the growth rate distribution belongs. For our empirical analysis,

we use data on corporate tax records provided by the National Tax College, which includes annual sales

revenues, profits, and the amount of corporate tax paid by firms. This is the population data in Japan and

covers almost all firms in Japan from 2014 to 2020. Constructing a panel data tracking the growth path of

these firms, we empirically test the two assumptions.

To empirically test the random walk assumption, we focus on the correlation of growth rates over

consecutive periods. Specifically, we consider dependencies not only in the entire distribution, as measured

by Spearman’s ρS or Kendall’s τ , but also in their tail regions. We find that the dependence between

consecutive growth rates, if they exist, is weak across the entire distribution and even weaker in the tail

regions. These results support the random walk assumption, especially when focusing on HGFs. For the

growth rate distribution, we consider one-year and three-year growth rates and analyze the heaviness of the

distribution tails using density estimates, QQ-plots, and mean excess functions. We find that the growth rate

distributions have tails that are strictly heavier than an exponential, indicating that they are subexponential.

These empirical findings confirm that the two assumptions used in our theoretical analysis are consistent

with the data, implying that the growth path of HGFs is driven by a large jump rather than a gradual increase.

To provide additional empirical support, we consider the following ratio:

r :=
X1

X1 +X2

where X1 and X2 represent the growth rates for the first half and second half of a certain period, respectively

(e.g., X1 and X2 are growth rates in 2015 and 2016, respectively, and X1 +X2 is the growth rate over the

two years). The ratio r represents the contribution of the growth rate in the first half to the growth rate over

the entire period. We examine how the histogram of r changes depending on the value of X1 +X2. We find

that the histogram of r exhibits a U-shaped curve with peaks at 0 and 1 when the growth rate over the entire

period is high (i.e., when X1 +X2 is large). This suggests that when focusing on HGFs, it is more likely

that high growth over the entire period is caused by high growth in either the first half or the second half of

the entire period, but not both. This empirical finding aligns with our theoretical analysis, which suggests

that the sample path of HGFs is characterized by sudden, large jumps. The U-shaped curve of the histogram

of r reflects that these jumps occur either in the first half or the second half but are not evenly distributed

across the entire period.

Our findings are derived from statistical regularities, that is, the random walk and the growth rate

distribution; we do not employ a particular optimization model to describe firm behavior. Following the

spirit of Geroski (2000), we assume that firm growth is highly unpredictable—essentially random—and that

it is not possible to predict which firms will become HGFs in the future. However, our analysis shows

that even if a firm’s growth is random, there exist robust empirical features that characterize firm growth

dynamics. This is because, due to the randomness (i.e., the sufficient complexity of firm growth), firm growth

dynamics are governed by the logic of probability theory. The U-shaped curve of the ratio r, which we call
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the U-shaped law, is an example of how randomness gives rise to an empirical law in economic phenomena.

Related literature

This paper belongs to the literature on firm growth dynamics, which aims to understand the observed

empirical regularities (see Coad (2009), Coad et al. (2014), Dosi et al. (2017), and Coad et al. (2022b) for a

survey). In particular, a series of empirical studies have explored two key assumptions regarding firm growth:

the heavy-tailedness of the growth rate distribution and the random walk assumption (i.e., the independence

of growth rates over consecutive periods).

Regarding the former, since the seminal work by Stanley et al. (1996), it has been recognized that the

growth rate distribution deviates from a Gaussian and is close to a Laplace distribution (see, e.g., Bottazzi

et al. (2001), Bottazzi and Secchi (2006), and Arata (2019)). This means that compared to a Gaussian

distribution, the growth rate distribution has a more peaked center and heavier tails. This distribution shape

is one of the most robust empirical regularities, observed across different countries, times, and sectors.

Furthermore, several recent papers (e.g., Buldyrev et al. (2007);Bottazzi et al. (2011);Dosi et al. (2020))

empirically demonstrate that the tail of the growth rate distribution is strictly heavier than that of the Laplace

distribution (i.e., an exponential tail). For instance, Bottazzi et al. (2011) reject the null hypothesis that growth

rates follow a Laplace distribution and propose the Subbotin family, which includes a Laplace distribution as

a special case. In our analysis, consistent with these empirical studies, we confirm that the tail of the growth

rate distribution is heavy and strictly heavier than an exponential function. However, we do not specify the

functional form of the growth rate distribution. In our analysis, the only requirement is that the tail is heavier

than an exponential (i.e., subexponential), and there is no need to specify its functional form. In this respect,

our implications regarding the pattern of firm growth dynamics can be considered robust.

Regarding the random walk assumption, there is a strand of empirical studies discussing the persistence

of growth rates (e.g., Coad (2007); Coad and Hölzl (2009); Frankish et al. (2013); Dosi et al. (2020)). Their

results are mixed; for example, Coad (2007) shows that while growth rates exhibit negative autocorrelation

for small firms, large firms exhibit positive autocorrelation. However, this autocorrelation reported in the

literature is generally weak, and in most instances, "lagged growth is a poor signal of future growth" (Coad

et al. (2013), p.617).1 Furthermore, in recent years, many researchers have focused on the persistence of

high growth in the context of HGFs (e.g., Delmar et al. (2003), Daunfeldt and Halvarsson (2015), Coad et al.

(2018), Hölzl (2014), Esteve-Pérez et al. (2022)). These studies empirically show that the persistence of high

growth is quite weak. Notably, Daunfeldt and Halvarsson (2015) show that HGFs are "one-hit wonders,"

1Another empirical regularity related to the random walk assumption is Gibrat’s law. Considering the sample sizes used in recent
empirical studies, the null hypothesis that the growth rates of firms are independent and identically distributed tends to be rejected.
However, when considering only matured firms excluding small businesses, it is known that Gibrat’s law approximates the empirical
growth process well. See Lotti et al. (2009) and Daunfeldt and Elert (2013).
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meaning that firms experiencing a high-growth period do not subsequently undergo another high-growth

period.2 Additionally, another empirical finding that makes our stochastic approach more appealing is the

lack of firm attributes characterizing growth dynamics. Bianchini et al. (2017) and Moschella et al. (2019)

show that the persistence of high growth is not related to any firm characteristics. These results suggest that

it is extremely difficult to predict high growth in advance, and therefore, it is reasonable to describe firm

growth dynamics as a stochastic process, aligning with the random walk assumption.3

The closest paper to our study is Coad et al. (2013), where they model firm growth dynamics as a simple

random walk with increments of ±1. That is, by only considering whether the increment is positive or

negative, they compare the frequency of observed growth patterns (such as four consecutive positive growths

+ + ++ or alternating pattern + − +−) with those predicted by the simple random walk. They show

that this simple random walk provides a good approximation for growth dynamics.4 Following the spirit

of Coad et al. (2013), we assume that firm growth dynamics follow a random walk, but extend this idea by

considering the distribution of its increments (i.e., the growth rate distribution). Our analysis shows that the

sample path properties of the random walk qualitatively differ depending on the heaviness of the distribution

tail of increments. By this method, our analysis provides a unified explanation entailing the heaviness of the

distribution tail, (non-)persistence, and the sample path properties of firm growth dynamics.

Outline

This paper is organized as follows. Section 2 considers a random walk model with increments following

a subexponential distribution. Section 3 provides empirical results using data on corporate tax records in

Japan. Section 4 concludes. In the Appendix, we examine the effect of firm age on firm growth dynamics.

2In analyzing the persistence of firm growth, many previous studies have focused the autocorrelation of the firms’ growth rates
themselves. In contrast, Capasso et al. (2014) and Bottazzi et al. (2023) utilize quantile values and transition probability matrices
of growth rates, focusing on dependence in the tail regions. In line with these studies, our analysis examines dependence not only
as represented by correlation coefficients across the entire distribution but also in the tail regions.

3One might think that the high growth of a firm is the result of innovation, such as R&D investments, and that there is a close
connection between the persistence of a firm’s high growth and the persistence of innovation. However, an empirical study by
Guarascio and Tamagni (2019) show that the persistence of a firm’s high growth is not related to the persistence of innovation. Such
results support our approach of describing firm growth as a stochastic process.

4As an empirical study on firm growth patterns, Coad et al. (2022a) should be mentioned. They investigate whether the growth
patterns of firms (e.g., whether the growth path is smooth or involves significant fluctuations) affect subsequent growth or the
probability of exit. In contrast, our analysis focuses solely on the observed growth patterns (i.e., without considering the effect on
subsequent growth or exit probabilities), aiming to find empirical laws within those growth patterns.
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2 Probabilistic Method

This section provides probabilistic methods to analyze firm growth dynamics. Section 2.1 introduces

a random walk and the two distribution classes. Section 2.2 examines the relation between the summation

and maximum of iid random variables. Section 2.3 discusses the sample path properties of a random walk.

2.1 Random walk

Let Sk be the size of a firm at time k. We analyze the evolution of its logarithm over n periods, i.e.,

logSk for 0 ≤ k ≤ n. The growth rate at time k is defined as Xk := logSk − logSk−1. Thus, the growth

rate over n periods is the sum of growth rates up to n:

logSn − logS0 =
n∑

k=1

Xk

We assume that logSk is described by a random walk with an initial point logS0, which is equivalent to the

following assumption.

Assumption 2.1. Growth rates X1, X2, ..., Xn are independent and identically distributed (iid) random

variables with a distribution F .

It is worth mentioning two implications derived from the iid assumption. First, under the iid assumption,

a firm’s growth rate is independent of its initial size; that is,Xk does not depend on logSk−1. This is known as

Gibrat’s law and is widely accepted in the existing literature as a reasonable approximation for the empirical

growth dynamics. Furthermore, the iid assumption implies that there is no autocorrelation of growth rates

X1, X2, ..., Xn. This means that, under the iid assumption, high growth in one period does not affect the

probability of high growth in subsequent periods. We will empirically examine this point in Section 3.2.

As will be discussed in Section 2.3, the property of a random walk depends on the distribution of its

increments, namely Xk, especially on the tail part. In our analysis, rather than assuming Xk to follow some

particular distribution, we introduce distribution classes categorized by the heaviness of the distribution tail.

Since our interest lies in HGFs, only the right tail of the distribution is considered. The first distribution class

is light-tailed distributions, which are defined by their tails being exponentially bounded. More precisely,

this class is defined by the existence of the moment generating function:

Definition 2.2. A distribution is light-tailed if its moment generating function exists for some λ > 0; that is,

EeλXk < ∞ for some λ > 0.

Examples of light-tailed distributions include the distribution of a bounded random variable (e.g.,

the uniform distribution), Gaussian distribution, and Laplace distribution. The Laplace distribution, in

particular, is of great importance in our analysis; since the Laplace distribution has an exponential tail, it

can be considered as the boundary of this class. That is, if a distribution has a tail strictly heavier than an
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exponential, it is not light-tailed. In such cases (i.e., when the moment generating function does not exist for

any λ > 0), we say that the distribution is heavy-tailed.

Next, we introduce a subclass of heavy-tailed distributions known as subexponential distributions, which

requires regularity in the asymptotic behavior of the distribution tail.

Definition 2.3. A heavy-tailed distribution F on R+ is subexponential if

lim
x→∞

F ∗ F (x)

F (x)
(1)

exists, where F (x) := F [x,∞) and F ∗ F (x) is the convolution of F with itself. Let F be a distribution on

R and X be a random variable drawn from F . F is subexponential if the distribution of X+ := max{0, X}
is subexponential.

For later purpose, we also introduce a subclass of subexponential distributions, which requires another

slightly stronger regularity condition on their tails.

Definition 2.4. A heavy-tailed distributionF onR is strong subexponential if the mean ofX+ := max{0, X}
exists and

lim
x→∞

1

F (x)

∫ x

0
F (x− y)F (y)dy

exists.

If the limit in Eq.(1) exists for a heavy-tailed distribution, it is equal to 2 (see Theorem 2.12 in Foss

et al. (2011)). Recall that F ∗ F represents the tail probability of the sum of two iid random variables,

X1 and X2, and the tail probability of the maximum of these two random variables is P(max{X1, X2} >

x) = 1 − F 2(x) ∼ 2F (x). Therefore, Eq.(1) means that the tail probability of the sum is asymptotically

equivalent to that of the maximum of the two random variables. That is, when the sum X1 + X2 takes a

large value, it is due to either X1 or X2 taking a large value, but not both.

While (strong) subexponential distributions are a proper subclass of heavy-tailed distributions (i.e.,

there exist heavy-tailed distributions that are not subexponential), almost all of the heavy-tailed distributions

encountered in practical applications are (strong) subexponential.5 For instance, Pareto, log-normal, and

Weibull distributions with an exponent less than 1 are included in the class of (strong) subexponential

distributions (see, e.g., Chapter 3 in Foss et al. (2011)). In particular, consider the Weibull distribution with

parameter α > 0;

Fα(x) = e−xα
, x ≥ 0

5The requirement in Definition 2.3 is only that the limit in Eq.(1) exists, and it does not require convergence to a specific value. As
long as there is sufficient regularity for the limit in Eq.(1) to exist, these conditions are satisfied, meaning that, except for pathological
cases, most heavy-tailed distributions can be considered subexponential. The same applies to Definition 2.4.
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The parameter α controls the heaviness of the tail: as α decreases, the tail becomes heavier. When α = 1, it

reduces to the exponential distribution. Thus, the Weibull distribution with α ≥ 1 (including the exponential

case) is light-tailed, whereas the Weibull distribution with α < 1 is (strong) subexponential.

2.2 Summation and maximum

Let us consider the sum of growth rates over n periods,
∑n

k=1Xk. As shown below, the tail probability

of the sum qualitatively differs depending on whether the distribution of Xk is light-tailed or heavy-tailed.

Before discussing the general results, consider a simple case where X1, X2, ..., Xn are iid Gaussian random

variables with mean 0 and variance σ2. In this case, the sum also follows a Gaussian distribution with mean

0 and variance nσ2. Thus, using Mills’ ratio, we obtain

P(
n∑

k=1

Xk > u) = 1− Φ

(
u√
nσ

)
≤ 1√

2π
exp

(
− u2

2nσ2

)
for a large u. Here, Φ represents the distribution function of the Gaussian distribution. Thus, with a fixed n,

the tail probability of the sum is controlled by σ2 and decays rapidly as u → ∞ (Gaussian decay).

Next, consider the case where the distribution of Xk is light-tailed. In general, the tail probability of a

random variable is closely related to how rapidly the moment generating function increases as λ increases.

Specifically, we impose a condition on the increasing rate of the moment generating function, which is

satisfied for the Gaussian and Laplace distributions.

Proposition 2.1. Suppose that the moment generating function of a centered random variable Xk satisfies

logEeλXk ≤ ν2λ2

2
, for all |λ| < 1

α
(2)

for some non-negative constants ν, α. Then, the tail probability of the sum is bounded as follows:

P(
n∑

k=1

Xk > u) ≤

exp(− u2

2nν2
) for 0 ≤ u ≤ nν2

α

exp(− u
2α) for u > nν2

α

Proof. This is a straightforward application of concentration inequalities (see, e.g., Wainwright (2019) and

Boucheron et al. (2012) for reviews). Proposition 2.9 in Wainwright (2019) states that using Chernoff’s

inequality, we obtain the upper bound on the tail probability of Xk:

P(Xk > u) ≤

exp(− u2

2ν2
) for 0 ≤ u ≤ ν2

α

exp(− u
2α) for u > ν2

α

Due of the independence of X1, ..., Xn, the logarithm of the moment generating function exhibits additivity;

that is,

logEeλ
∑n

k=1 Xk ≤ nν2λ2

2
, for all |λ| < 1

α

From this and the above upper bound, the desired result is derived.

For the Gaussian distribution, Eq.(2) is satisfied with ν = σ, α = 0. This result is equivalent to the
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upper bound of the tail probability derived from Mills’ ratio, except for a constant factor. For the Laplace

distribution with parameter b (i.e., the variance is 2b2), Eq.(2) is satisfied with ν = 2b, α = 2b. In this case,

for a fixed n, the probability in the central region (i.e., 0 ≤ u ≤ 2nb) exhibits a Gaussian decay, similar to

the case of the Gaussian distribution. This aligns with the central limit theorem, suggesting that the rapid

decay of probability occurs because X1, ..., Xn cancel each other out. On the other hand, when considering

a large value of u, the tail probability of the sum
∑n

k=1Xk deviates from Gaussian decay. This is because,

for a fixed n, the central limit theorem holds only near the center of the distribution and does not extend to the

region where u > 2nb. Moreover, note that if the distribution of a component Xk is exponentially bounded,

the tail probability of the sum
∑n

k=1Xk is also exponentially bounded. That is, if the tail probability of

the sum
∑n

k=1Xk is heavier than an exponential, the tail probability of the element Xk is not exponentially

bounded.

When subexponential distributions are considered, the deviation from Gaussian distributions is more

significant and provides a different implication. If the distribution ofXk is subexponential, the limit in Eq.(1)

can be extended to any n, the tail probability of the sum can be approximated as follows (see Corollary 3.20

in Foss et al. (2011)): as u → ∞,

P
( n∑
k=1

Xk > u
)
∼ nP(Xk > u) (3)

Note that the right-hand side of Eq.(3) represents the probability that the maximum of the n iid random

variables max{X1, ..., Xn} exceeds u; that is, P(max{X1, ..., Xn} > u) = 1 − Fn(u) ∼ nF (u). This

means that an extreme value of the sum
∑n

k=1Xk is typically caused by one extreme value among its

components. In other words, when dealing with subexponential random variables, the probability that

a combination of moderate values of components results in an extreme value of the sum is negligible.

Moreover, Eq.(3) implies that if the distribution of the sum
∑n

k=1Xk has a heavier tail than an exponential,

the distribution of each component Xk is also subexponential and exhibits the same decay rate as u → ∞.

In Section 3, we use these properties to test whether the growth rate distribution is (strong) subexponential.

2.3 Sample path properties

Here, we discuss the distribution of the growth rates X1, . . . , Xn given that a high growth rate is

achieved over n periods. In other words, we examine which combinations of growth rates X1, . . . , Xn are

most likely to occur given this rare event. On this point, we introduce two general results from probability

theory (Asmussen (1982) and Asmussen and Klüppelberg (1996)).

To accomplish this, several technical assumptions are necessary. We are interested in firms that grow

rapidly and outperform others. However, if EXk is positive and a longer time period is considered (i.e.,

n → ∞), the condition
∑n

k=1Xk > u is satisfied with probability 1. This means almost all firms would

meet this condition. Rather than considering such a trivial case, we define the growth rate as an excess from
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a constant c (a value close to EXk) and focus on firms whose sum of excess growth rates is large. This is

equivalent to focusing on firms that significantly outperform (i.e., exceed) the average growth rate of other

firms. More precisely, letting Yk := Xk − c and considering the random walk of Y1, ..., Yn with a negative

drift, we focus on the event
∑n

k=1 Yk > u for some n.

The probability of this event is less than 1 (because EYk < 0), and it becomes smaller as u increases

(i.e., a rare event). Once this rare event occurs, how does the sequence Y1, Y2, ... reach u? We consider the

following conditional probability Pu := P(·|
∑n

k=1 Yk > u for some n). LetFn be the empirical distribution

of Y1, ..., Yn under Pu:

Fn(x) :=
1

n

n∑
k=1

I(Yk ≤ x)

Letting ν(u) be the time when
∑n

k=1 Yk exceeds u for the first time (i.e., ν(u) := inf{n :
∑n

k=1 Yk > u}),

Fν(u) is the empirical distribution of Y1, ..., Yν(u) conditional on the event that the random walk exceeds u at

ν(u).

For the case of light-tailed distributions, Asmussen (1982) identifies the distribution towards which the

empirical distribution Fν(u) converges and characterizes the fluctuations of the random walk conditioned on

ν(u) < ∞. Let Fγ denote the twisted distribution of F defined by

Fγ(x) :=

∫ x

−∞
eγydF (dy)

where γ > 0 is chosen such that EeγYk = 1 and E|Yk|eγYk < ∞. Note that Fγ has a positive mean. Letting

∥ · ∥ denote the supreme norm, the result relevant to our analysis is as follows:

Theorem 2.2 (Theorem 3.1 and Corollary 3.1 in Asmussen (1982)). Suppose that F is light-tailed. Then,

as u → ∞ ∥∥Fν(u) − Fγ

∥∥ Pu−→ 0

If properly normalized, (
∑tν(u)

k=1 Yk − tu)0≤t≤1 converges in distribution to a Brownian bridge.

This theorem indicates that under Pu (i.e., conditioned on the event that
∑n

k=1 Yk exceeds u for some

n), the empirical distribution of Yk is close to Fγ for a large u. Recall that the unconditional mean of Yk is

negative, meaning that for most firms, the sum
∑n

k=1 Yk will eventually trend towards −∞ as n → ∞. The

fact that Fγ has a positive mean suggests that the growth rates for HGFs (i.e., firms for which
∑n

k=1 Yk > u

for some n), Y1, ..., Yν(u) are upward drifted, and consequently, their sum reaches u. The latter half of the

theorem provides a similar image for the sample paths of HGFs. Since the expectation of the Brownian bridge

at any t is 0, the sum
∑tν(u)

k=1 Yk increases its value at the rate of tu on average. Therefore, when the growth

rate distribution is light-tailed, the typical sample path is a gradual increase, as depicted in Figure 1(a).

For subexponential distributions, Asmussen and Klüppelberg (1996) provides the convergence of Fν(u)

and its sample path properties.

Theorem 2.3 (Theorem 1.1 and 1.2 in Asmussen and Klüppelberg (1996)). Suppose that F is strong
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subexponential and belongs to the maximum domain of attraction of extreme value distributions.6 Then, as

u → ∞, ∥∥Fν(u) − F
∥∥ Pu−→ 0

Furthermore, {
∑⌊tν(u)⌋

k=1 Yk/ν(u)}0≤t≤1 converges in distribution to {−µt}0≤t≤1, where µ is the mean of

F .

This theorem implies that, in contrast to the light-tailed case, the conditional distribution of growth

rates for HGFs (i.e., firms that satisfy
∑n

k=1 Yk > u for some n) is essentially the same as the unconditional

one, i.e., non-HGFs. Indeed, the latter half of the theorem means that the random walk of HGFs up to time

tν(u) (i.e., Y1, ..., Ytν(u)) decreases on average by −µtν(u), which is the same as that for other non-HGFs.

Intuitively, this is equivalent to saying that the sample path for HGFs is the same as that for non-HGFs just

before a large jump arrives, then a single large jump leads to the upcrossing at u, as described in Figure 1(b).

To summarize, the above discussion shows that, given the random walk assumption, there are two types

of sample paths: a gradual increase and a sudden increase due to a large jump. The type of its sample path

is determined by whether the growth rate distribution is light-tailed or subexponential. Thus, our remaining

tasks are to empirically examine (1) the random walk assumption (especially autocorrelation of growth rates)

and (2) the class of the growth rate distribution. These tasks will be carried out in the next section.

3 Empirical Results

This section provides our empirical analysis using data on corporate tax records in Japan. Section

3.1 describes our data. Section 3.2 analyzes the random walk assumption by focusing on the correlation

of growth rates over consecutive periods. Section 3.3 analyzes the heavy-tailedness of the growth rate

distribution. Section 3.4 shows that the sample path properties of the random walk discussed in Section 2

are consistent with our data.

3.1 Data description

Our data is based on corporate tax records collected by the National Tax Agency and provided by the

National Tax College. Since the amount of corporate tax for each firm is calculated based on the firm’s

profits, firms are required to report their profits annually. As this report is mandatory for all firms in Japan,

this data covers almost all companies in Japan.7 Firms also report their basic attributes (e.g., firm’s name,

6More precisely, the condition required here is thatF belongs to the maximum domain of attraction of Frechet or Gumbel distributions.
This class is broad, including heavy-tailed distributions (such as Pareto, log-normal, and Weibull distributions), and does not impose
any restriction in practical applications. For more on extreme value theory, see Embrechts et al. (1997).

7While our analysis defines a firm as an unconsolidated entity, and indeed most firms pay corporate taxes on this basis, parent
firms that own 100% of the stocks of a subsidiary can file taxes as a consolidated firm, allowing them to offset the profits and
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location, and industry) as well as annual sales revenues. Spanning from 2014 to 2020, the data includes a

unique ID for each firm, which is used to construct panel data.

We have two other auxiliary data provided by the National Tax College, which are combined with the

panel data. One contains information about a firm’s incorporation date, which enables us to identify a firm’s

age. In the following analysis, we defined a firm’s age as the difference between 2014 and the year of its

incorporation. The other is about records of mergers. It enables us to identify the year when a merger

occurs and the firm IDs involved in each merger. To focus on firms’ internal growth, we exclude firm-year

observations where a merger takes place from our samples.8

We impose several conditions on the sample used in our analysis. First, we exclude firms in the financial

and government sectors from our sample. Next, we exclude micro firms with extremely small sales. This

is because our main variable of interest, the growth rate, is defined as the logarithmic difference in sales

(i.e., for firm i in period k, Xi,k := logSi,k − logSi,k−1), and if the size of a firm in the initial period is

extremely small, it would result in an extremely large value for its growth rate. Since our analysis assumes

that growth rates are iid random variables, we only consider firms with sales of more than 100 million yen in

the initial period (i.e., in 2014). Finally, we exclude firms established less than ten years before 2014 from

our sample. This is because the growth dynamics of a firm are related to its age, and specifically, the random

walk assumption (or Gibrat’s law) that we impose in our analysis is less likely to hold for newly established

firms (see, e.g., Lotti et al. (2009)). In other words, our analysis focuses on firms that are neither too young

nor too small.9

As a result of the aforementioned procedures, the sample size is reduced to 548, 657 for growth rates

from 2014 to 2015 (denoted by X15).10 The sample sizes and summary statistics of growth rates for other

years are provided in Table 1.

losses between the parent firm and its subsidiary (known as the consolidated tax system). In the data used for this analysis, firms
utilizing this system are excluded. As of 2019, the total number of parent firms using this system is 1, 721, and the total number of
consolidated subsidiaries included is 12, 983.

8Another detail about our panel data is that certain firms have multiple records within a year. This occurs because these firms have
accounting periods of less than a year, resulting in multiple financial accounts during that year. Each of these accounts is used to
calculate the corresponding tax payments. In our analysis, we aggregate a firm’s sales revenues within a year to approximate their
annual sales revenues. Then, we exclude samples if the duration of the aggregated accounting period (i.e., the difference between
the closing date of the latest accounting period and the starting date of the oldest accounting period) is less than 11 months.

9The analysis of young firms with age less than ten years is provided in the Appendix. We find that the growth dynamics of young
firms differ from those of older firms.

10We denote the one-year growth rate by Xk and the three- and six-year growth rates by Xk−l, where k is the end period and l is the
initial period. For example, X17−14 represents the three-year growth rate from 2014 to 2017, i.e., X17−14 := logS2017− logS2014.
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Table 1: Summary statistics of growth rates. One-, three-, and six-year growth rates are considered. Here, only firms
that are not in the financial and government sectors, with sales of more than 100 million yen in 2014, and that have
been established for more than ten years are included.

3.2 Autocorrelation

The random walk assumption implies that the growth rates in consecutive periods are independent of

each other. In this section, we examine the empirical validity of the random walk assumption by analyzing

the dependence structure between growth rates in consecutive periods. The most commonly used measure

to evaluate the dependence between two random variables is Pearson’s correlation coefficient. However, it

is well known that Pearson’s correlation coefficient is not independent of their marginal distributions. For

example, even if the dependence between the two random variables remains unchanged, Pearson’s correlation

coefficient can vary when the marginal distributions change. In other words, it is not clear whether Pearson’s

correlation coefficient truly reflects the dependence between the two random variables or is influenced by

their marginal distributions, making it a less reliable measure of dependence (for more details, see Embrechts

et al. (2002)). To avoid these issues, we use Kendall’s τ and Spearman’s ρS as alternative measures.

Kendall’s τ measures the ordinal association between two random variables, assessing the degree to

which the variables tend to be ranked in a similar way. If (X1, X2), (X
′
1, X

′
2) are independent random pairs

with a common distribution, Kendall’s τ is defined as follows:

τ := P[(X1 −X ′
1)(X2 −X ′

2) > 0]− P[(X1 −X ′
1)(X2 −X ′

2) < 0]

Kendall’s τ measures the probability that the order of two random variables aligns, and thus, it does not

depend on the marginal distributions of X1, X2. Kendall’s τ ranges between [−1, 1], and equals 0 when the

two random variables are independent of each other.

Spearman’s ρS is a measure of rank correlation, assessing the degree to which the order of two variables
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is correlated. It is defined as the correlation coefficient of the transformed variables F1(X1) and F2(X2):

ρS := Corr[F1(X1), F2(X2)]

Here, F1 and F2 are the distribution functions of X1 and X2, respectively. When transformed by these

functions, both F1(X1) and F2(X2) follow a uniform distribution in the [0, 1] interval, thus ρS does not

depend on the marginal distributions of X1, X2. Similar to Kendall’s τ , ρS ranges between [−1, 1], and

equals 0 when the two variables are independent of each other. For a later purpose, we provide the values of

Kendall’s τ and Spearman’s ρS when X1 and X2 follow a bivariate Gaussian distribution with parameter ρ

(see Section 4.3 in Joe (2014)):

τ = 2π−1 arcsin(ρ), ρS = 6π−1 arcsin(ρ/2)

Using these dependence measures, we examine the dependence of one-year growth rates (i.e., X15, X16)

as well as the dependence of three-year growth rates (X20−17, X17−14). The results show that for one-year

growth rates, the estimates of Kendall’s τ and Spearman’s ρS are −0.0059 and −0.017 respectively. For the

three-year growth rates, the estimates of Kendall’s τ and Spearman’s ρS are 0.033 and 0.045 respectively. In

both cases, the estimates of τ and ρS are both close to 0, suggesting that the dependence between consecutive

growth rates is very weak. This can also be confirmed through the scatter plots of the two growth rates.

Figure 2(a) and (b) show the scatter plots for the one-year growth ratesX15, X16 and for the three-year growth

rates X20−17, X17−14, respectively. As is evident from the figures, there is no clear dependence between

them. Consistent with the estimates of the correlation coefficients, this suggests that any dependence between

consecutive growth rates (if it exists) is very weak.11

The results of weak dependencies above suggest the validity of treating growth rates as independent

random variables. However, Spearman’s ρ and Kendall’s τ capture dependencies across the entire range

of the distribution and thus may not necessarily reflect dependencies in the tail regions (i.e., high growth).

To analyze dependencies in the tail regions, we count how many times high growth is experienced by each

firm within the entire sample period (i.e., across six growth rates: X1, X2, ..., X6). Consider the following

two extreme scenarios. The first scenario is that one group of firms experiences consecutive high growth

throughout the entire period, while the other group does not experience any high growth at all. The second

scenario is that the random walk assumption holds, and therefore, the frequency of high growth occurrences

follows a binomial distribution. To be more precise, when considering growth rates higher than the pth

11Using the estimates of Kendall’s τ and Spearman’s ρS , it is possible to test whether X15 and X16 are independent of each other.
Given that τ = ρS = 0 under the independence assumption (i.e., the null hypothesis), we test whether the estimates significantly
deviate from 0. We confirmed that the null hypothesis can be rejected with p-values below 0.01. The same applies to X20−17

and X17−14. Since our analysis assumes that growth rates are iid random variables, one might think that this result contradicts
our assumption. However, as emphasized in the Introduction, what is necessary for our analysis is that firm growth dynamics are
sufficiently random. Considering the magnitude of the estimates of Kendall’s τ and Spearman’s ρS , this assumption seems to be
empirically valid. Indeed, as we will see later, the statistical regularities predicted by the iid assumption are actually observed in the
data.
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(a) X15 (y-axis) and X16 (x-axis) (b) X17−14 (y-axis) and X20−17 (x-axis)

Figure 2: Scatter plot of growth rates. The bright orange color represents areas of high sample point density.

percentile as high growth, the probability distribution of the number of occurrences would be following: for

0 ≤ m ≤ 6

P(Number of high growth = m) =

(
6

m

)
pm(1− p)6−m

Below, we consider cases with p = 0.75, 0.80, 0.97, 0.99 and compare the empirical frequency of high-

growth occurrences with a binomial distribution.

The results for p = 0.75, 0.80 are provided in Figure 3, that is, we consider the number of occurrences

of moderate positive growth within the sample period. The histogram of the number of occurrences deviates

both qualitatively and quantitatively from the binomial distribution. For example, in the case of p = 0.8, the

mode of the binomial distribution is given at m = 1, whereas the histogram of occurrences has its mode at

m = 0. Therefore, for p = 0.75, 0.80, the independence of growth rates (i.e., the random walk hypothesis)

does not hold, suggesting the existence of dependence between growth rates in consecutive periods.

However, when considering cases of high growth, such as p = 0.97 and 0.99, the implication is totally

different. The results for these cases are provided in Figure 4. As clearly shown in Figure 4, the histogram

of occurrences of high growth is very close to the binomial distribution. This means that there are no special

groups of firms that experience high growth consecutively, and even among firms that have experienced

high growth during the sample period, most experience only once. This serves as additional evidence that,

when considering the tail region such as p = 0.97, 0.99, the random walk assumption provides a good

approximation for the empirical firm growth dynamics.

3.3 Growth rate distribution

In this section, we test the other assumption in our analysis, namely, whether the growth rate distribution

is subexponential. We investigate whether the growth rate distribution has a heavier tail than an exponential

function. It should be noted that our analysis does not require that the growth rate distribution or its tails
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(a) p = 0.75 (b) p = 0.80

Figure 3: Histogram of the number of occurrences of Xk > F−1
k (p) within the sample period compared to the

binomial distribution. For panels (a) and (b), the binomial distribution with parameters p = 0.75, 0.80 is calculated,
respectively. "Empirical" represents the histogram of the number of occurrences of Xk > F−1

k (p), and "Theoretical"
represents the theoretical values calculated from the binomial distribution.

(a) p = 0.97 (b) p = 0.99

Figure 4: Histogram of the number of occurrences of Xk > F−1
k (p) within the sample period compared to the

binomial distribution. For panels (a) and (b), the binomial distribution with parameters p = 0.97, 0.99 is calculated,
respectively. "Empirical" represents the histogram of the number of occurrences of Xk > F−1

k (p), and "Theoretical"
represents the theoretical values calculated from the binomial distribution.
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to follow any particular functional form but only that it has a tail heavier than an exponential. Hence, in

the following analysis, we focus on comparing the estimated tail of the growth rate distribution with an

exponential function.

First, we perform a density estimation of the growth rate distribution. Here, we plot the density function

with the y-axis on a log scale. The reason for using a log scale on the y-axis is that an exponential function

appears as a straight line, and the density function of the Laplace distribution forms a triangle: that is,

in the tail region (i.e., the exponential tail region), the density function exhibits a straight line if growth

rates follow the Laplace distribution. Therefore, any deviation from a straight line in the tail region can be

considered evidence that the growth rate distribution deviates from an exponential tail. We also consider

the complementary cumulative distribution function (CCDF). This function, which is defined as 1− Fn(x)

where Fn is the empirical distribution derived from the sample, represents the probability of observing

values greater than x, i.e., an estimate of the tail probability. Similar to the density estimate, we examine

whether the CCDF derived from the data deviates from a straight line.

Figure 5 plots the density estimates for one-year and three-year growth rates with the y-axis on

a logarithmic scale. As is evident from both figures, consistent with previous studies, the growth rate

distribution is more peaked at the center and has heavier tails compared to the Gaussian distribution.

Moreover, in both figures, the density function does not follow a straight line but instead curves upwards in

the tail regions. Similarly, the CCDF shown in Figure 6 does not follow a straight line but curves upwards

as larger growth rates are considered. This serves as evidence that the growth rate distribution has a tail

heavier than an exponential function, implying that it is subexponential.12

Additionally, in Figure 5(b) and Figure 6(b), we also consider the six-year growth rate distribution.

Compared to the distributions for one-year and three-year growth rates, the central part appears smoother,

while in the tails regions, it remains heavier, similar to those of one-year and three-year growth rates

distributions. As seen in Section 2.2, within a short sample period of n = 6, the central limit theorem

applies only to a limited central part, and the tails remain heavier than both the Gaussian and exponential.

Thus, in the tail regions, the distribution of the sum
∑n

k=1Xk reflects the characteristics of the distribution

of individual growth rates Xk.

Next, to further verify that the growth rate distribution has tails heavier than an exponential, we use

QQ-plots. The main idea behind QQ-plots is that if a random variable Xk follows a distribution F , then

the transformed random variable F (Xk) should follow a uniform distribution (for more details, see Section

12Figure 5 and Figure 6 show differences in the shapes of the growth rate distribution by year (e.g., between X15 and X16), which
can be attributed to differences in their sample. Specifically, our analysis considers only firms with sales of over 100 million yen
in 2014, which applies equally to both X15 or X16. In other words, when considering X16, we are not imposing a condition that
firms have sales over 100 million yen in 2015, thus including smaller firms that fall below this threshold in 2015 in our sample. In
our analysis, especially as in Section 2.3, we focus on firms selected based on their 2014 sales and then examine their subsequent
growth paths, thus employing this sample selection.
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(a) One-year growth rates (b) Three-, six-year growth rates

Figure 5: Density estimates of growth rates. In both panels, the y-axis is on a logarithmic scale. Panel (a) provides
the density estimates for the one-year growth rates, X15 and X16. Panel (b) provides the density estimates for the
three-year growth rates, X17−14 and X20−17, as well as for the six-years growth rate X20−14.

(a) One-year growth rates (b) Three-, six-year growth rates

Figure 6: CCDF of growth rates. Here, we focus solely on positive growth rates. Panel (a) provides the CCDF for
the one-year growth rates, X15 and X16. Panel (b) provides the CCDF for the three-year growth rates, X17−14 and
X20−17, as well as for the six-year growth rate X20−14.
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(a) One-year growth rates (b) Three-, six-year growth rates

Figure 7: QQ-plot against the Gaussian distribution. Both x-axis and y-axis are normalized. Panel (a) provides the
QQ-plot for the one-year growth rates, X15 and X16. Panel (b) provides the QQ-plot for the three-year growth rates,
X17−14 and X20−17, as well as for the six-year growth rate X20−14.

6.2.1 in Embrechts et al. (1997)). Thus, letting the ordered samples be Xn,n ≤ ... ≤ X1,n, if Xk actually

follows F , the points(
F (Xk,n),

n− k + 1

n+ 1

)
, k = 1, ..., n, or

(
Xk,n, F

−1

(
n− k + 1

n+ 1

))
, k = 1, ..., n

should plot on the 45-degree line (in particular, the latter is called a QQ-plot). Any distribution can be

used as the reference distribution F depending on the hypothesis being tested. In the following analysis, we

consider Gaussian and Laplace distributions as the reference distribution and verify whether they plot on the

45-degree line.

The results of the QQ-plots are presented in Figure 7 for the Gaussian distribution and Figure 8 for

the Laplace distribution as the reference distribution. It is clear from Figure 7 that the QQ-plot does not

align with the straight line. Notably, the plot curves upwards in the right tail and downwards in the left tail,

indicating that both tails are heavier than those of a Gaussian distribution. Similarly, in Figure 8, with the

reference distribution being the Laplace distribution, the QQ-plot does not follow the straight line, curving

upwards in the right tail and downwards in the left tail. This indicates that both tails are heavier than those

of the Laplace distribution. These results, aligning with the results from the density estimates and CCDF,

serve as evidence that the growth rate distribution is subexponential.

Finally, we use the mean excess function as a method to characterize the heaviness of the tail of the

growth rate distribution. This function represents the expected value of the excess Xk − u given that the

growth rate exceeds u. It is defined as a function of u as follows:

e(u) := E[Xk − u | Xk > u] for u > 0.

We investigate how e(u) changes as u increases. The advantage of e(u) lies in the fact that the rate at which

e(u) increases or decreases with u reflects the tail heaviness of the distribution of growth rates Xk. For
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(a) One-year growth rates (b) Three-, six-year growth rates

Figure 8: QQ-plot against the Laplace distribution. Both x-axis and y-axis are normalized. Panel (a) provides the
QQ-plot for the one-year growth rates, X15 and X16. Panel (b) provides the QQ-plot for the three-year growth rates,
X17−14 and X20−17, as well as for the six-year growth rate X20−14.

instance, if Xk follows an exponential distribution with parameter λ, then e(u) = λ−1; that is, e(u) remains

constant. If e(u) is an increasing (or decreasing) function of u, it implies that the distribution of Xk has a tail

that is heavier (or lighter) than that of an exponential function. Hence, when e(u) is an increasing function

of u, it serves as further evidence that the growth rate distribution is subexponential.

Figure 9 provides estimates of the mean excess function e(u) for both one-year and three-year growth

rates. From this figure, it is clear that e(u) is not constant but rather an increasing function with respect to

u, though the rate of increase is not constant, particularly for one-year growth rates. This indicates that the

growth rate distribution possesses a tail that is heavier than an exponential. These findings are consistent with

results from density estimation, QQ-plot, and Cox-Oakes test, all suggesting that the growth rate distribution

is subexponential.

Note that the shapes of the mean excess function e(u) for one-, three-, and six-year growth rates

are remarkably similar. This similarity is not a coincidence but rather a consequence of the distributions

being subexponential. As seen in Eq.(3), even as n increases, the tail probability of the sum
∑n

k=1Xk is

determined by the tail probability of the one-year growth rate P(Xk > x), except for a multiplier n. Given the

definition of the mean excess function, the effect of the multiplier n is removed when considering conditional

expectations, hence the mean excess function remains the same regardless of the value of n for sufficiently

large u. Therefore, the resemblance of e(u) for one-, three-, and six-year growth rates in Figure 9 serves as

evidence supporting that the growth rate distribution is subexponential.
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Figure 9: Mean excess function over threshold u. The x-axis represents the threshold u. It shows the mean excess
function for the one-year growth rate X15, the three-year growth rate X17−14, and the six-year growth rate X20−14.

3.4 Sample path properties

The empirical results presented in Sections 3.2 and 3.3 indicate that the two assumptions in our analysis,

namely the random walk assumption and the subexponentiality of the growth rate distribution, are empirically

valid. Therefore, in light of the discussion in Section 2, it implies that the growth dynamics of HGFs are

characterized by jumps. Here, we provide direct evidence to support the significance of this jump-type

process.

To this end, considering the two-year growth rates (i.e., X15 + X16) and six-year growth rates (i.e.,

X20−14 = X17−14 +X20−17), we examine how the growth rate of the first half of the period contributes to

the growth rate over the entire period. Specifically, we explore the ratios defined as follows:

r1 :=
X15

X15 +X16
, r3 :=

X17−14

X17−14 +X20−17

The ratio r1 represents how much the growth rate of 2015, X15, contributes to the two-year growth rate

X15 + X16. Similarly, the ratio r3 represents how much the growth rate of the first three years, X17−14,

contributes to the six-year growth rate X20−14. For instance, if a firm’s growth rates are 3% in 2015 and

3% in 2016, then r1 equals 1/2, indicating that the growth rates of both 2015 and 2016 contribute equally

to the growth rate over the two years. Note that, since Xk’s are assumed to be iid random variables in our

analysis, the distributions of r1 and r3 should be symmetric around 1/2. The question to be addressed here

is whether the event of r1 = 1/2 (or r3 = 1/2), where the contributions of the growth rates in the first half

and the second half of the period are equal, is the most likely to occur.

Figure 10 presents the histogram of r1 conditional on the event X15 +X16 > u. This means that we

focus on firms whose two-year growth rate exceeds u and examine how the histogram of r1 changes as u

increases. Here, u is varied from 0.2 to 2.4. These figures show that when X15+X16 is relatively small (e.g.,
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Figure 10: A series of the histograms of r1 conditional on X15+X16 > u. The value of u increases from 0.2 (top-left)
to 2.4 (bottom-right) by 0.2. We exclude samples where r1 is exactly equal to 0 or 1. This is because some firms report
that the values of their current sales are exactly the same as the previous ones. Even without these samples exactly
equal to 0 or 1, spikes at 0 and 1 are still clearly observed.

Figure 11: A series of the histogram of r3 conditional on X20−14 > u. The value of u increases from 0.2 (top-left)
to 2.4 (bottom-right) by 0.2.

u = 0.2), the histogram of r1 exhibits a mountain shape with a peak at 1/2. That is, when the growth rate

over the two years is not high, it is more likely that the growth rates from both periods contribute equally to

the growth rate over the two years. In contrast, as u increases (e.g., u = 1.2), the mountain shape collapses.

Instead, the histogram exhibits a U-shaped curve with peaks at 0 and 1, which implies that high growth over

the two years is caused by a large value of either X15 or X16, but not both. Thus, when considering HGFs

over the two years, it is more likely that a HGF experiences extremely high growth during one of the periods,

which dominates the high growth over the entire two years.

A similar U-shaped curve is observed for the histogram of r3. Figure 11 gives the histograms of r3
conditional on the event X20−14 > u, where u varies from 0.2 to 2.4. As in the case of r1, when u is

relatively small, the histogram peaks at 1/2, indicating the contributions from the first and second halves

of the entire period are approximately equal. However, as u increases, the U-shaped curve with peaks at 0

and 1 becomes clear. This means that high growth over the entire period (i.e., a large value of X20−14) is

explained by high growth in either the first half or the second half of the entire period, but not both. In other

words, it is more likely that HGFs have a short period during which they grow rapidly.

The observed U-shaped curve in the histograms of r1 and r3 provide direct empirical evidence supporting

our implication given in Section 2: for HGFs, the most typical (or likely) path is not a gradual increase over

23



the entire period but a path characterized by a large jump. Given that this U-shape curve captures the essence

of firm growth dynamics for HGFs, we refer to it as the U-shaped law of HGFs.

4 Conclusion

The understanding of firm growth dynamics is a fundamental theme in economics, and numerous studies

have been conducted on this subject so far. However, it is known that predicting firm growth, especially for

HGFs, is a formidable task, and the empirical growth paths of firms appear to be completely random. This

paper attempts to characterize the seemingly random dynamics using probability theory, and indeed, shows

that there exists a robust empirical law governing these dynamics.

Our analysis is based on two empirically testable assumptions: the random walk assumption and the

subexponentiality of the growth rate distribution. Using comprehensive data from corporate tax records in

Japan, we confirmed that these two assumptions are empirically valid. In particular, the empirical fact that

the growth rate distribution has a heavier tail than an exponential has significant implications for firm growth

dynamics. We show that the sample path of HGFs is characterized not by a gradual increase in firm size but

by jumps. The U-shaped curve of the histogram of r, which represents the contribution of the growth rate in

the first half to the entire period, serves as direct evidence of this characteristic of firm growth dynamics.

In our analysis, we do not specify any economic models for firm growth but derive our implications

solely from statistical regularities, such as the subexponentiality of the growth rate distribution. This

approach is appealing, especially when the growth process is too complex to be explained by an explicit

model, and only its probabilistic features are available. Due to this complexity, the firm growth dynamics

are governed by the logic of probability theory. Our findings suggest that even when firm growth is random

and unpredictable—or because of this randomness—there exists an empirical law governing its dynamics,

especially for HGFs.
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Table 2: Summary statistics of growth rates for the young firms. Only firms with age less than ten years as of 2014
are considered. One-, three-, and six-year growth rates are considered. Here, only firms that are not in the financial
and government sectors and have sales of more than 100 million yen in 2014 are included.

5 Appendix

Here, we consider the growth dynamics of young firms established less than ten years before 2014,

which are excluded from the analysis in Section 3.13 We demonstrate that the characteristics of firm growth

dynamics observed in Section 3, especially the U-shaped law, do not apply to this group. The summary

statistics of the growth rates for these young firms are given in Table 2.

Compared to Table 1, Table 2 exhibits a higher dispersion of growth rates among the young firms (e.g.,

the difference between Q1 and Q3). This high dispersion is also evident in Figure 12, where the samples

are divided into age groups at ten-year intervals and the densities of growth rates are estimated for each age

group. As shown in Figure 12, the density for the young firms deviates from those of other age groups.14

These figures suggest that the impact of firm age on growth rates is significant for the young firms but weaker

for other age groups.

Moreover, the shape of the growth rate distribution for the young firms appears to differ from those

analyzed in Section 3. Figure 13 presents the CCDF, QQ-plot (with Laplace distribution as the reference),

and the mean excess function of six-year growth rates for the young firms. As discussed in Section 2.2, if the

annual growth rates follow a subexponential distribution and the iid assumption holds, then the distribution

13In the following, firms that were established less than ten years before 2014 are referred to as young firms.

14One might think that the high dispersion of growth rates in the young firms is because these firms are smaller and hence exhibit
higher dispersion in growth rates. To address this concern, we consider only firms with sales between 108 yen and 109 yen and
analyze their density function. The results are quite similar to those shown in Figure 12, indicating that even when size is controlled
for, the density function for the young firms deviates from that of other age groups.
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(a) One-year growth rate (b) Three-year growth rate

Figure 12: Density estimates of growth rates for age groups. Samples are divided into groups of 10-year intervals
based on their ages. For example, "age_20" represents the group of firms with age older than 10 and less than 20. In
Panel (a), one-year growth rates in 2015 (i.e., X15) are considered. In Panel (b), three-year growth rates in 2017 (i.e.,
X17−14) are considered.

(a) CCDF (b) QQ-plot (c) Mean Excess Function

Figure 13: Growth rates for the young firms. The CCDF, QQ-plot, and the mean excess function of six-year growth
rates are considered. Panel (b) uses the Laplace distribution as the reference distribution.

of six-year growth rates should also have a heavier tail than an exponential; however, Figure 13 shows

that the right tail of the distribution of six-year growth rates are rather close to an exponential. Thus, the

assumption of subexponential growth rates is less likely to hold for the young firms. It is expected that the

U-shape curve for the histograms of ratios r1 and r3 would not be observed for these young firms.15

Figure 14 shows histograms of the r1 ratio for the young firms, which corresponds to Figure 10. It

displays how the histogram of r1 changes as the value of u in the condition X15 +X16 > u is varied from

0.2 to 2.4. Unlike Figure 10, for these young firms, a U-shaped curve in the histograms of r1 cannot be

15We also find the weak but positive autocorrelation of growth rates for the young firms. Kendall’s τ and Spearman’s ρ are 0.081 and
0.105, respectively. Although these estimates are still small, the autocorrelation nature of growth rates for young firms seems to be
different from that for other older firms. Indeed, in the context of Gibrat’s law, the previous literature suggests that Gibrat’s law is
more likely to hold for old and mature firms (see, e.g., Lotti et al. (2009)), which aligns with our findings.
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Figure 14: A series of the histograms of r1 conditional on X15 + X16 > u for the young firms. The value of u
increases from 0.2 (top-left) to 2.4 (bottom-right) by 0.2.

Figure 15: A series of the histogram of r3 conditional on X20−14 > u for the young firms. The value of u increases
from 0.2 (top-left) to 2.4 (bottom-right) by 0.2.

observed. Even with large values of u, peaks at 0 and 1 do not appear. In Figure 15, r3 is considered for

these young firms, but similar to the case with r1, a U-shaped curve is not observed. From these results, we

conclude that the U-shaped law does not apply to these young firms. These results suggest that the growth

paths of the young firms differ from those of older firms and are more complex. Our two assumptions—the

random walk assumption and the subexponential distribution of growth rates—seem insufficient to fully

characterize the growth dynamics of young firms. This issue is worth further exploration, but it is beyond

the scope of this paper.
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